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1 Executive Summary 
The goal of the document is the design and specification of WiseGRID DR Optimization framework, as the 
back-end application running to support the Aggregator and Retailer business roles. More specifically, the 
purpose of this deliverable is the design and specification of load models and their behaviour when subject 
to demand response events. To this end, we describe a demand modelling approach along with demand 
response optimization of loads that takes into account the potential of assets for demand modification in 
order to participate in alternative demand response strategies for both network operation and market par-
ticipation optimization.  

 Therefore, the first objective is to provide the back-end systems that take into account data as retrieved 
from the different end-points (sensor data for environment conditions, devices' control setpoints and 
sub-metering level data) and perform analytics towards the extraction of meaningful information for 
the business role of the Aggregator (WiseCORP) and the Retailer (WiseCOOP). Such information is used 
to perform demand modelling & forecasting and demand flexibility profiling. Three demand flexibility 
models are defined for this purpose: a) Comfort-based Demand Flexibility model, b) Price-based De-
mand Elasticity model and c) Electric Vehicle Demand flexibility model. 

 The second objective is to define the optimization framework which will encompass the abovemen-
tioned models allowing in that way the participation of a selection of assets in demand response cam-
paigns. This necessitates the design and specification of interfaces amongst the load models and Wise-
GRID tools, so that to accommodate the business requirements of the actors considered in the project 
(DSO, Aggregator and Retailer). 

For the Comfort-based Demand Flexibility model, the focus is to build accurate models that take into ac-
count information related to events from user behaviour. Such events reflect the user’s comfort preferences 
and are crucial in defining dynamic demand profiles; these events allow the extraction of real-time demand 
flexibility as a function of time, device operational characteristics, environmental context/ conditions and 
occupant comfort preferences. The main idea behind this modelling framework is the extraction of DER Flex-
ibility Profiles as a function of contextual conditions and occupant’s actions. This model is part of the 
WiseCORP tool and allows an Aggregator to provide flexibility upon DSO’s request. 

In lack of low-level context information, the high-level Price-Based Demand Elasticity model is deployed, 
reflecting temporal real-time demand elasticity as a function of environmental and market (price and incen-
tive schemes) variables. These prediction models may be utilized by Retailers for the accurate prediction of 
their clientele’s demand such that to purchase adequate energy in the wholesale market and/or achieve a 
balanced portfolio. 

Lastly, EVs are also modelled by the Electric Vehicle Demand flexibility model as assets that can offer a 
multitude of ancillary services, including flexibility for congestion management, regulation services, second-
ary and tertiary response, etc. that can in principle deliver similar services as batteries under availability con-
straints. 

One of the main goals of WiseGRID is to deploy advanced Demand Response schemes in order to empower 
energy users and actors. WiseGRID DR Optimization Framework accommodates the needs of DSOs for flexi-
bility requests via orderly defined and standardized interfaces and messages (WG Cockpit), and also caters 
for the requirements and obligations of other actors, such as Aggregators and Retailers. The DR optimization 
framework in WiseGRID serves the needs of the aforementioned actors through two high-level demand re-
sponse scenarios; namely implicit and explicit demand response.  

Implicit demand response scenarios focus on the assumption that demand can be shaved or shifted by de-
ploying variable pricing levels throughout the day. On the other hand, explicit demand response scenarios 
relate to directly controlling loads inside a building (HVACs, lighting devices, etc.). For the former, one needs 
to know how elastic each building’s demand is to different price levels, while for the latter one requires to 
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know the thermal and visual comfort boundaries of the user to offer flexibility without violating occupant 
comfort conditions.   
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2 INTRODUCTION 

2.1 PURPOSE OF THE DOCUMENT 

The aim of the document is the design and specification of WiseGRID DR Optimization framework, as the 
back-end application running to support the Aggregator and Retailer business roles. More specifically, the 
purpose of this deliverable is the design and specification of load models and their behaviour when subject 
to demand response events. To this end, we describe a demand modelling approach along with demand 
response optimization of loads that takes into account the demand modification potential of assets in order 
to participate in alternative demand response strategies with the aim of both network operation and market 
participation optimization. 

The objectives of this deliverable are,  

 firstly, to model loads that span three asset classes:  

a) building assets that include systems for heating, cooling, air handling, lighting and other con-
trollable buildings loads,  

b) batteries, irrespective of where they are installed or deployed, that will be handled sepa-
rately from other loads, and  

c) Electric Vehicles.  

 Secondly, to define the optimization framework which will encompass the abovementioned models 
and allow the participation of a selection of asset classes to explicit and implicit demand response 
strategies. 

With respect to the building asset loads to be modelled, the ones with greater capacity to provide demand 
flexibility are HVAC and lighting devices; these are more appropriate and favourable with respect to DR ca-
pacity. Innovative and well-proven machine learning techniques will be utilized in order to improve the ac-
curacy of the models taking into account information of events emanated from user behaviour and respective 
comfort preferences, towards defining robust and dynamic demand profiles. This will result to the delivery 
of the Comfort-based Demand Flexibility model as part of WiseCORP, reflecting real-time demand flexibility 
as a function of multiple parameters, such as time, device operational characteristics, environmental con-
text/conditions and occupant comfort preferences.  

Additionally, in lack of low-level context information, high-level Price-Based Demand Elasticity Profiles will 
be developed, reflecting temporal real-time demand elasticity as a function of environmental and market 
(price and incentive schemes) variables. Batteries are also going to be modelled as assets that can offer a 
multitude of ancillary services, including flexibility for congestion management, regulation services, second-
ary and tertiary response, etc. Finally, Electric Vehicles (EVs) are going to be considered as moving batteries 
that can in principle deliver similar services as batteries under availability constraints. 

2.2 SCOPE OF THE DOCUMENT 

The scope of the document is to report the final version of the WiseGRID DR Optimization framework and 
the models of the respective classes of assets. Therefore, this deliverable is related to tasks T10.2 and T10.3, 
which refer to the Consumer-Centric Demand Response profiling and Consumer-Centric Demand Response 
Optimization Modules, respectively. 

To this end, the scope revolves around the configuration of comfort-based flexibility models, the definition 
of appropriate profiling models in response to variable tariffs and financial incentives, the consideration of 
batteries as flexibility providers, the definition of behavioural profiles for EVs and, last but not least, the 
optimization framework that will enable the participation of certain loads to implicit and explicit demand 
response strategies. 
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The Comfort-based Demand Flexibility model enables the delivery of Context-Aware Flexibility Profiles, 
reflecting real-time demand flexibility as a function of multiple parameters, such as time, device operational 
characteristics, environmental context/conditions and occupant comfort preferences. Towards this 
direction, the incorporation of occupant profiling data to Distributed Energy Resource (DER) models is 
considered for the extraction of Context-Aware Flexibility Profiles. More specifically, thermal and visual user 
preferences are associated with the respective HVAC and lighting DER models for the definition of demand 
flexibility as a function of low-level building information (time, device operational characteristics, indoor 
environment, and comfort preferences) and are further made available for explicit Demand Response 
schemes. 

In lack of low-level information, the definition of price-based building profiles will be utilized for the 
extraction of high-level Price-Based Demand Elasticity Profiles. These will define appropriate profiling models 
and services for defining and analysing the elasticity of demand in response to variable tariff and financial 
incentive schemes. Such models are the basis upon which individual consumer profiles will be trained on 
building-level energy consumption information alongside weather information in order to provide accurate 
elasticity estimations for participation in implicit Demand Response strategies at the portfolio-level.  

Additionally, batteries and EVs play an important role in demand flexibility provision, hence their modelling 
is directly relevant to this deliverable. We configure appropriate battery models. This task will provide accu-
rate battery models in respect to state of charge and discharging rates and allow the provision of ancillary 
services to the grid by the Aggregator.  

The outcomes from the abovementioned models are further utilized in respect to their scope and the 
relevant DR strategy they participate in and are made available to the WiseGRID DR optimization framework 
for portfolio-level and building-level control optimization. The extraction of accurate flexibility profiles will 
further enable the on-line simulation of different portfolio-level or building-level control strategies towards 
the selection of the optimal strategy that fits to the business models examined in the project. 
 

2.3 STRUCTURE OF THE DOCUMENT 

The structure of the document is as follows: 

 Chapter 2 provides an overview of the Deliverable focusing on the purpose and scope of the docu-
ment and its relation to tasks of the project; in other words, this chapter defines the aim and objec-
tives of the current deliverable and sets the boundaries for the flexibility models and the optimization 
approach used in WiseGRID; 

 Chapter 3 gives a list of applicable requirements for the DR framework in respect to the overall list 
of project requirements; these are the requirements that are relevant to the DR framework and need 
to be met in respect to their priority; these requirements set the basis upon which chapter 4 builds; 

 Chapter 4 outlines the process that is envisaged by the WiseGRID project in order to facilitate the 
application of implicit and explicit Demand Response campaigns on the relevant electricity end-users, 
as per the respective business cases (described in chapter 5); more specifically, chapter 5 defines in 
more detail the scope of each actor involved in WiseGRID as well as the tools that are relevant to the 
DR framework; 

 Chapter 5 describes the business cases examined in WiseGRID along with the relevant workflows and 
main assumptions for each actor. The two main Demand Response business cases are presented in 
this chapter, along with the assumptions and workflow that are envisaged to introduce them in a 
real-world case. This chapter suggests the need of models for flexibility estimation, which are de-
scribed in chapter 6; 

 Chapter 6 describes the models which will be used for the estimation of the available building-level 
flexibility and elasticity; these will then be used by the tools described in chapter 6.4.1 to facilitate 
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the business cases of WiseGRID and to implement the relevant DR campaigns. More particularly, it 
documents the design and specification of WiseGRID Comfort-based demand flexibility model, the 
Price-Based Elasticity model when there is lack of low-level information from the building environ-
ment, and the Electric Vehicle Demand Flexibility model; 

 Chapter 6.4.1 draws from the business cases to define high-level Demand Response scenarios and 
outlines the WiseGRID demand response optimization approach applied on each scenario; 

 Lastly, Chapter 8 concludes this Deliverable and recommends further steps to be performed in the 
project. 
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3 APPLICABLE REQUIREMENTS 
 

The ultimate goal is for the technological solutions proposed within WiseGRID to be tested and studied in 
real applications. Hence, a set of requirements is necessary for the systematic analysis of the conditions un-
der which the technological solutions are expected to operate. The following table is a collection of applicable 
requirements for the DR framework taken from the overall list of project requirements and are defined as a 
starting point for the design of the framework (overall list defined in D2.1 [1]). 

 

Require-
ment ID 

Description Classification Priority 

DRF_003 
The user needs to be able to configure the electricity tariff, or connect it 
with some Public API in case of real-time pricing 

Consumer-centric 
demand response 

framework 
5 

DRF_004 Energy Storage should be used in order to provide flexibility to the DR 
Consumer-centric 
demand response 

framework 
5 

DRF_005 
The system should be compatible with others at the project in order to be 
able to share information 

Consumer-centric 
demand response 

framework 
5 

DRF_006 
Different types of demand flexibility profiles will be defined  as part of the 
consumer-centric DR profiling addressing the objectives of the project 

Consumer-centric 
demand response 

framework 
3 

DRF_007 
The comfort-based demand flexibility profiles should be designed taking 
into account remote monitoring (and controllable) of building loads exam-
ined in the project 

Consumer-centric 
demand response 

framework 
5 

DRF_008 
As part of comfort-based demand flexibility, we should address comfort 
profiles associated with the operation of energy-hungry HVAC devices 

Consumer-centric 
demand response 

framework 
4 

DRF_009 
Towards the extraction of visual comfort profiles, information about lumi-
nance levels (luminance sensors) under different operational conditions( 
lighting device status) is required 

Consumer-centric 
demand response 

framework 
5 

DRF_010 
Towards the extraction of thermal comfort profiles, information about ther-
mal context (temperature & humidity sensors) under different operational 
conditions (HVAC device status) is required 

Consumer-centric 
demand response 

framework 
5 

DRF_011 
Towards the extraction of HVAC demand flexibility profiles, information 
about operational conditions (HVAC device status) and HVAC energy con-
sumption is required 

Consumer-centric 
demand response 

framework 
5 

DRF_012 
Towards the extraction of Lighting demand flexibility profiles, information 
about operational conditions (Lighting device status) and  energy consump-
tion is required 

Consumer-centric 
demand response 

framework 
5 

DRF_014 
The extraction of comfort-based flexibility profiles should be based on accu-
rate DER models 

Consumer-centric 
demand response 

framework 
4 

DRF_015 
Towards the extraction of comfort-based demand flexibility profiles, infor-
mation about energy cost (retailer tariffs) is required 

Consumer-centric 
demand response 

framework 
4 
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DRF_016 
Comfort-based demand flexibility profiles shall support the implementation 
of demand shifting strategies (P2H flexibility profiling extraction) 

Consumer-centric 
demand response 

framework 
4 

DRF_017 
Comfort-based flexibility profiles should ensure the minimum of occupants 
disturbance on building environment 

Consumer-centric 
demand response 

framework 
4 

DRF_018 
Comfort based Flexibility Profiles should be exploited towards the imple-
mentation of automated DR strategies 

Consumer-centric 
demand response 

framework 
4 

DRF_019 
Price based Flexibility Profiles should be defined, reflecting the enrolment 
of prosumers on price based DR scenarios 

Consumer-centric 
demand response 

framework 
5 

DRF_020 
High-level Demand Elasticity Profiles should be provided in lack of low level 
information (device level) information 

Consumer-centric 
demand response 

framework 
3 

DRF_021 
Towards the extraction of price based flexibility profiles, information about 
market prices (real-time hourly prices, day-ahead hourly prices, pricing 
schemes) is required 

Consumer-centric 
demand response 

framework 
4 

DRF_022 
Towards the extraction of price based flexibility profiles, information about 
external weather conditions should be available 

Consumer-centric 
demand response 

framework 
5 

DRF_023 
Towards the extraction of price based flexibility profiles, information about 
individual consumer consumption is required 

Consumer-centric 
demand response 

framework 
5 

DRF_025 
A central data management unit should be responsible for capturing real-
time and historical information required for the extraction of the different 
profiling types 

Consumer-centric 
demand response 

framework 
5 

DRF_026 
Real-time information required for the extraction of (comfort-based, price 
based) Demand Flexibility profiles, should be available in real-time through 
an automated way 

Consumer-centric 
demand response 

framework 
5 

DRF_027 
The consumer-centric DR profiling is running as a standalone service calcu-
lating the amount of potential flexibility at each demand side end point 

Consumer-centric 
demand response 

framework 
5 

DRF_028 
An Advanced Flexibility Analysis component should be designed to provide 
analytics over demand flexibility providing assets 

Consumer-centric 
demand response 

framework 
4 

DRF_029 
The Advanced Flexibility Analysis should exploit the results from consumer- 
centric DR profiling engine 

Consumer-centric 
demand response 

framework 
5 

DRF_030 
Sample analytics over the streams of flexibility data (aggregation, filtering & 
clustering ) will be supported by the Advanced Flexibility Analysis  engine 

Consumer-centric 
demand response 

framework 
5 

DRF_031 
Input values (capacity, response capability, location, time ) will set the con-
figuration parameters for the analytics process 

Consumer-centric 
demand response 

framework 
5 

DRF_032 
Along with real-time analytics, short term forecasting of demand flexibility 
should be provided by the Advanced Flexibility Analysis engine 

Consumer-centric 
demand response 

framework 
5 

DRF_033 
The outcomes of Advanced Flexibility Analysis engine may be available for 
visualization or to a DSS for DR strategies implementation at consumers 
level 

Consumer-centric 
demand response 

framework 
5 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 15 

 

DRF_034 
An Optimization DSS component should be designed to enable the aggrega-
tion of multiple consumers to participate in DSM strategies 

Consumer-centric 
demand response 

framework 
5 

DRF_035 
The Optimization DSS component should be designed to allow for the selec-
tion of the appropriate aggregated demand side assets to participate in DR 
programs 

Consumer-centric 
demand response 

framework 
5 

DRF_036 
The Optimization DSS component should enable interacting with different 
grid and market stakeholders requesting demand flexibility for the business 
services 

Consumer-centric 
demand response 

framework 
5 

DRF_037 
The Optimization DSS component should take into account the different DR 
contracts towards the selection of customers to participate in the associ-
ated campaigns 

Consumer-centric 
demand response 

framework 
5 

DRF_038 
The Optimization DSS component should be designed to dispatch the DR 
signal to the different demand side end points 

Consumer-centric 
demand response 

framework 
5 

DRF_039 
The Optimization DSS component should be designed to dispatch the asso-
ciated DR signal by taking into account the DR Contract 

Consumer-centric 
demand response 

framework 
4 

DRF_040 
The Optimization DSS component should  estimate the  impact of DR strate-
gies to the active consumers, by taking into account the outcomes from 
consumer-centric DR profiling engine 

Consumer-centric 
demand response 

framework 
5 

GEN_005 WiseGRID must promote a 'level playing field' which does not discriminate 
between competitors (e.g., suppliers, aggregators) as well as flexibility solu-
tions (e.g., storage, DR, EVs) 

General Require-
ments 5 

GEN_006 WiseGRID must make use of existing standards or standards under develop-
ment to provide easier access to market and the dissemination of the re-
sulting solutions worldwide 

General Require-
ments 3 

Table 1 – Table of Requirements 
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4 DEMAND RESPONSE: THE WISEGRID APPROACH 

4.1 CONTEXT 

One of the main goals of WiseGRID is to develop advanced Demand Response schemes in order to empower 
energy users and actors, and at the same time provide flexibility to the distribution grid operators. While 
WiseGRID accommodates the needs of DSOs for flexibility requests via orderly defined and standardized in-
terfaces and messages (WG Cockpit), it also caters for the requirements and obligations of other actors, such 
as Aggregators and Retailers. In doing so, the WiseGRID Demand Response approach serves the needs of the 
aforementioned actors through two high-level demand response scenarios; namely implicit and explicit de-
mand response.  

Implicit demand response scenarios focus on the assumption that demand can be shaved or shifted by de-
ploying variable pricing levels throughout the day. On the other hand, explicit demand response scenarios 
relate to directly controlling loads inside a building (HVACs, lighting devices, etc.). For the former, one needs 
to know how elastic each building’s demand is to different price levels, while for the latter one requires to 
know the thermal and visual comfort boundaries of the user to offer flexibility without violating occupant 
comfort conditions.  

To this end, WiseGRID aims at configuring dynamic visual and thermal comfort models for end-users (con-
sumers). These are associated with energy consumption and load usage metrics in order to define context-
aware demand flexibility profiles, as the basis for the definition of optimized flexibility-based Demand Re-
sponse strategies for the Aggregator (explicit Demand Response). The aforementioned models are amongst 
the tools available in the WiseCORP platform.  

Additionally, WiseGRID targets at configuring appropriate elasticity profiling models and services for defining 
and analyzing the elasticity of demand in response to variable tariff and financial incentive schemes. Such 
models are the basis upon which individual consumer profiles are trained to provide accurate elasticity esti-
mations so that to accommodate the needs of the Retailer (implicit Demand Response) through the 
WiseCOOP platform. 

Lastly, the WiseGRID tool ecosystem includes the WG STaaS/VPP (batteries) and WiseEVP (Electric Vehicles) 
platforms that are available to the Aggregator for the provision of flexibility services when requested by the 
DSO and other agents, targeting a stable and secure grid. These platforms incorporate models that reveal the 
energy needs of batteries and EVs along with their state of charge and discharging rates for appropriate 
flexibility provision. 

This deliverable provides the specification of the functionalities, models, profiles and algorithms for advanced 
Demand Response Mechanisms, utilizing different flexibility resources, such as building loads. 

The following is a contextual representation of the actors involved and the tools they interact with to fulfil 
their requirements. 
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Figure 1 – Contextual representation of Actors and Tools in WiseGRID 

4.1.1 Business scenario 

The main business scenarios that will be tackled within WiseGRID are the following.  

Explicit Demand Response 

The DSO interacts using the WG Cockpit in order to request a specific demand modification at certain areas 
of the distribution network for network management purposes (e.g. congestion relief). This message is 
broadcasted to the Aggregators through WiseCOOP’s explicit demand response interface. The Aggregators 
in turn, can aggregate available demand flexibility for explicit demand response campaigns from: 

 buildings via the collaboration with the facility manager using WiseCORP; this interaction occurs 
through WiseCOOP’s explicit demand response interface with WiseCORP; 

 batteries through direct use of WG STaaS/VPP; and 

 Electric Vehicles through direct use of WiseEVP. 

The Aggregator makes an offer back to the DSO in respect to their available flexibility through WiseCOOP’s 
explicit demand response interface with WG Cockpit.  

Implicit Demand Response 

Retailers use the WiseCOOP platform to identify imbalances in their portfolio and shape novel pricing 
schemes to adjust their portfolio’s energy consumption. These pricing schemes are determined by the 
WiseCOOP platform and broadcasted to all WiseGRID platforms. 

The following bullets describe the process for the determination, dissemination and use of the prices: 

1. WG Cockpit  

 Identifies grid imbalances and network congestion and is controlled by the DSO; 

 The DSO can then request flexibility from Aggregators; 
2. WiseCOOP 

 enables Aggregators to manage and implement explicit demand response strategies on 
buildings; 

 enables Retailers to perform implicit demand response strategies on their portfolio by defining 
dynamic pricing schemes and communicating them to WiseHOME, WiseCORP, WG STaaS/VPP, 
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WiseEVP; 
3. WiseCORP 

 performs automated (explicit) demand response by scheduling building loads in the near 
future (intra-day); 

4. WG STaaS/VPP 

 enables Aggregators to participate in explicit demand response campaigns using  collections 
of batteries that form a virtual power plant; 

5. WiseEVP 

 enables the Aggregators to aggregate Electric Vehicles and provide demand response services 
upon request of the DSO. 

 

4.2 PROCESS 
 

This subsection outlines the process that is envisaged by the WiseGRID consortium in order to facilitate the 
concurrent application of both Demand Response campaigns on the same electricity end-users. The main 
challenge addressed is the fact that explicit DR campaigns must have an assumption about the baseline de-
mand profile in order to establish whether the consumer has actually responded to an explicit DR signal. 

As a result, a process is proposed whereby the dynamic prices (implicit DR) are communicated day-ahead to 
the consumers which provides them the time to respond by optimizing their load scheduling. During the 
reference day (intra-day), the explicit DR signals are sent and consumers respond by changing the planned 
load schedules. 

The process also describes how the various asset classes will be handled by the different WiseGRID tools. 

Main assumptions 
During the running day, all field assets (heating, cooling, AHU, lighting, batteries, EVs, etc.) will be divided in 
three asset classes and each class will be exclusively managed by a single WG aggregator tool with the pur-
pose to deliver as many ancillary services as possible to other grid actors (e.g. DSO, BRP, TSO). 

 The three asset classes are: 
o Building assets – systems for heating, cooling, air handling, lighting and other controllable 

building loads. These will be managed by the WiseCORP application. 
 Building loads can typically deliver demand flexibility (demand shedding of shifting) 

services for grid congestion management. If managed properly they may also de-
liver fast response services (because they can shed their demand very fast). 

o Batteries (no matter where they are installed/deployed) will be managed by WG STaaS/VPP 
 Batteries can offer a multitude of ancillary services, including flexibility for conges-

tion management, regulation services, secondary & tertiary response, etc. It makes 
sense to keep them as a separate asset class that can be optimized for delivering 
such services 

o Electric Vehicles will be managed by WiseEVP; WiseGRID considered EVs connected on 
public charging stations.  

 EVs are moving batteries, they can in principle deliver similar services as batteries 
under availability constraints 

 
Process flow during operation 
 
Day-ahead (day -1) – With price-based/implicit Demand Response and bidding for the day after explicit DR 
will be operated within this time interval, the following bullet points imply a sequence in time: 
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1. WiseCOOP obtains wholesale market prices, forecast of 24-hour portfolio demand profile and own 
generation forecast 

a. WiseCOOP calculates a 24-hour dynamic price for the reference day based on some objec-
tive (e.g. portfolio balancing) 

i. It is likely that this dynamic price will be instantiated only as Critical Peak Pricing 
scheme for the pilot trials, but for purposes of generality it would be good for the 
tools to be able to handle any dynamic price scheme 

2. WiseCOOP broadcasts the price to all interested parties (which should include WiseCORP, WiseEVP 
and WG STaaS/VPP). 

3. WiseCORP will schedule all local building assets (heating/cooling/AHU) as optimally as possible 
based on the dynamic price in order to first maximise self-consumption and minimize the building 
level cost for grid imported energy   

o As a result of this optimization, every building asset (HVAC system, AHU, lighting system, 
etc.) will have its own operation schedule which directly implies an electricity consumption 
profile for day 0 operation. This schedule will be used as the reference demand profile per 
device for day 0 management of explicit Demand Response campaigns. 

4. WG Cockpit will perform power-flow calculations on its grid and identify potential grid problems.  
 
 
Intra-day (day 0) – explicit Demand Response campaigns will be operated within this time interval: 
 

1. The three tools (WiseEVP, WG STaaS/VPP & WiseCORP) will continuously collect the available de-
mand flexibility for the following short-term period and calculate the aggregated flexibility potential 
under their control 

o WiseCORP will deliver a 2-hour demand flexibility forecast, updated every 15/30/60 minutes 
depending on requirements of other apps 

2. If the DSO identifies potential congestion areas, Cockpit will generate a signal to indicate need for 
demand flexibility (demand shedding or turn-up) with a specific power requirement at specific time 
periods within the day and at specific network nodes/locations 

3. Cockpit will broadcast this signal to any interested party with request for proposal. 
4. WiseEVP, WG STaaS/VPP, WiseCOOP will receive the DSO signal 

a) WiseEVP and WG STaaS/VPP analyse it, identify whether the current state of their assets (viz. 
Electric Vehicles and batteries) allows them to assemble a viable flexibility offer and, an offer 
is created and sent to the WG Cockpit in response to the flex request. The offer will include 
the demand flexibility time series to be delivered as well as the expected remuneration; 

b) WiseCOOP asks WiseCORP for the current state of the building assets (devices), assembles a 
viable bid in respect to DSO’s request, bid is created and sent to the WG Cockpit in response 
to the flex request including potential flexibility per interval to be delivered as well as the 
expected remuneration;  

5. If the offer is accepted by the DSO, the related Aggregator then triggers the DR order to the respec-
tive platform (WiseEVP, WG STaaS/VPP, and WiseCOOP). 

  

 

4.3 ARCHITECTURAL OVERVIEW 

In order to gain a better understanding of the scope of the WiseGRID tools related to DR, and the components 
that comprise them, we initially present a low-level component architecture for WiseCOOP (Figure 2) and 
WiseCORP (Figure 3), which are the primary platforms responsible for implicit and explicit demand response 
scenarios, respectively. Thereafter, we provide a high-level overview of the WiseGRID DR tool ecosystem 
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illustrating these scenarios (Figure 4) in order to depict the process followed for each.  

An overview of the architecture from the WiseCOOP perspective is given below at the component level.  
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Figure 2 – WiseCOOP platform 

In the context of this deliverable, WiseCOOP is responsible for calculating novel pricing schemes for day-
ahead and broadcast it to all relevant WG tools. The Customer profiler & flex. estimator is responsible for 
defining appropriate pricing schemes based on inputs from Production and Demand forecast modules; their 
use is described in more detail in Chapter 6.4.1. WiseCOOP is also responsible for requesting available 
demand flexibility from WiseCORP; this is carried out through WG IOP. Lastly, the DR campaign scheduler is 
responsible for scheduling DR signals and communicating them via WG IOP to other WG tools. 

After the DR signal is broadcasted, WiseCORP receives it via WG IOP. In the following figure, a high-level 
connection of WiseCOOP to the Energy usage optimizer component in WiseCORP is shown. 
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Figure 3 – WiseCORP platform 

To put this in perspective, in case an implicit demand response event is triggered, the energy usage optimizer 
is responsible for optimizing energy usage in accordance to energy price per interval broadcasted by 
WiseCOOP. 

All the communications between WiseCORP’s components occur via an internal RabbitMQ service. 

For explicit demand response events, the Flexibility model server and Flexibility forecast components 
represent a compacted view of the core tools utilized by WiseCORP in order to estimate real-time potential 
flexibility and forecast potential flexibility at the device level. These components are shown here in a high-
level manner, while they are going to be presented in more detail in chapter 6.2. Control scheduling of 
devices inside the building is amongst the most important capabilities of WiseCORP in the context of DR 
scenarios. This is taken care of by the Asset Dispatcher, which is responsible for dispatching the appropriate 
signals on a device-specific manner through the internal rabbitMQ service to the BMS (Building Management 
System) Wrapper, which, in turn, is responsible for the actual control of the devices in question.  

All in all, the following Figure depicts a high-level diagram overview of the entire DR framework/tool defining 
the high-level boundaries of actors involved and the respective WiseGRID platforms concerned. 
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Figure 4 – High-Level Component Level Diagram of the WiseGRID Framework 

Figure 4, depicts the process followed (as presented in section 4.2) for each actor and the demand response 
scenario involved: 

1. Elasticity Estimation & Price Calculation: this is used by the retailer in order to perform implicit 
demand response. These tools are used in order to define a dynamic price scheme for day-ahead and 
communicate it to other WG tools; 

2. DR Request Analysis: this module represents a high-level view of the message handler within 
WiseCOOP for negotiation and bidding with DSO; this then forwards the message to other tools in 
WiseCOOP’s explicit demand response framework; 

3. Optimization: this represents the process that ranks the available buildings in respect to their 
available flexibility; 

4. Aggregated Flex Estimation: this represents a high-level view of the component that requests 
potential flexibility from WiseCORP platform; 

5. Dispatch to Building: this component dispatches flexibility requests per building; 
6. Control Optimization: this represents a compacted view of the optimization approach implemented 

in WiseCORP for translating the flexibility requested to device setpoints; 
7. Flexibility Estimation: is a high-level view of the flexibility estimation for prospective device setpoints 

by retaining thermal and visual comfort boundaries; 
8. Profiling: is the module that performs the user profiling (thermal and visual user comfort profiling); 
9. Setpoint dispatch: is the component dispatching the output setpoint of control optimization to the 

available devices.  

4.4 INTEGRATION IN THE WISEGRID TOOL ECO-SYSTEM 

An illustration of the intended functionality deployment of implicit and explicit Demand Response strategies 
within WiseGRID, and high-level interfaces with other WiseGRID tools is given below. 
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Figure 5 – Day-ahead DR: High-level overview of WiseGRID components and interconnections 
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Figure 6 – Explicit DR: High-level overview of WiseGRID components and interconnections 

 

The architectural view of implicit and explicit Demand Response cases shown above reflects the business 
cases and workflows defined in WiseGRID, which are provided in detail in the following chapter. 
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5 DR BUSINESS CASES AND WORKFLOWS IN WISEGRID 
 

5.1 IMPLICIT DEMAND RESPONSE 

5.1.1 Business case 
 

 Portfolio imbalances and customers: retailer uses the WiseCOOP tool to alleviate portfolio imbal-
ances through dynamic price determination and communication to the energy management compo-
nent deployed at the premises of electricity consumers (as described in deliverable D7.1 [2]) 

o Depending on how often price signals are transmitted to consumers and availability of nec-
essary information, the retailer can calculate the new price (per Program Time Unit – PTU) 
that can balance its incoming/outgoing energy flows. This is dependent on the information 
available per pilot site (PTU definition in the various sites). 

5.1.2 Main assumptions 
 

 Fairness assumption: all customers receive and are billed according to the same energy price. The 
main reason lies in the fairness principle that is prevalent in the current electricity retail market, 
where flexibility is not yet valued by retailers or consumers. Hence, varying prices per customer (in-
cluding zonal pricing approaches) will not be investigated in the WiseGRID pilot demonstrations. 

 Price elasticity: the price elasticity of demand has been estimated and calibrated using correlated 
energy demand and price time-series. Elasticity will be assumed constant in the relevant price/de-
mand ranges. 

5.1.3 Work-flow 
 

 The WiseCOOP tool user interface displays the overlapping forecasts of aggregated portfolio energy 
demand and total energy supply (including energy purchased in the wholesale markets, local gener-
ation, etc.) 

o Demand and supply should be time-series of day-ahead forecasts 

o Time granularity can be 15 minutes. It can be programmable, but actually depends more on 
the granularity of available time-series or depending on availability per site as mentioned 
beforehand 

o This graph will immediately indicate to the tool user where the imbalances are in his portfolio 

 When the user clicks on each time period where demand/supply are not in balance, he will be lead 
to a screen where the tool will display the amount of imbalance, the portfolio price elasticity of de-
mand for the specific time period as well as the price differential (positive for excess demand and 
negative for excess supply) on top of the baseline price that can alleviate the imbalance. 

o The baseline price fluctuation over 24 hours (time-series) is assumed static and known day 
ahead. Price does not need to be constant throughout the day. What is important is that the 
day-ahead demand forecast corresponds to the baseline price, so that any resulting price 
differential can be applied to the baseline price to yield the new price. 

 The tool user can accept the new price and this price can be communicated to the consumers 
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5.1.4 Prerequisites 

Time-series of: 

 Price elasticity of demand of entire retailer portfolio. 

 Day-ahead aggregated demand forecast. 

 Day-ahead aggregated local generation forecast. 

 Day-ahead forecast of energy purchased in wholesale market. 

 Baseline price day-ahead. 

 

5.2 EXPLICIT DEMAND RESPONSE 

5.2.1 Business case 
The WiseCOOP tool is used by aggregators in order to participate in the market for flexibility based on re-
quests from the network operator or other market actor who requires provision of demand flexibility.  

There are two alternative implementation paths that can be followed, depending on the potential interac-
tions between the aggregator and the other market actors.  

1. The first case refers to a scenario where multiple aggregators are active in the same (physical or 
logical) area where flexibility is requested and the total available flexibility (which complies with all 
the applicable criteria) exceeds the requested one. As a result, each aggregator should coordinate 
with the DSO (or other flexibility requester) in order to exchange information about his available 
flexibility and financial offer. The DSO may or may not accept the offer. In the positive case, the 
aggregator will deliver the flexibility by estimating and dispatching setpoints for the available assets. 
Using the WiseCOOP interfaces, the aggregator will be able to visualise DR requests (and their specific 
characteristics) from the DSO (or other flex users), contrast them against the demand and demand 
flexibility of his own portfolio, estimate the available flexibility that he can offer, send an offer for 
flexibility provisioning, receive a positive or negative response from the DR requester, calculate the 
best way (lowest cost, fairness, compliance to contract clauses) to deliver the flexibility, estimate the 
necessary DR signals and dispatch them to the selected assets. 

2. The second case refers to a simpler scenario whereby the aggregator can respond immediately to a 
DR request, without the need to coordinate with any other actor in advance. This scenario can cor-
respond to a market situation where a single aggregator serves a given (physical or logical) area, 
hence he has full freedom to satisfy the DR request in the manner he deems optimal. 

5.2.2 Main assumptions 
 All assets already engaged with the aggregator in a commercial manner are members of the relevant 

platform, which informs him about the flexibility potential at the appropriate time interval 

 No assumption is made on how the assets will actually be controlled, i.e. whether the aggregator will 
directly control them in a Direct Load Control fashion (automated DR), or whether the aggregator 
will request a change in their demand profile from the operator of the assets (manual DR). It is evi-
dent that the first approach yields more predictable and reliable results, but also places constraints 
on the availability of tele-command infrastructure. 

 Optimizing the selection of assets for participation in DR campaigns relies on a pre-processing of the 
characteristics in order to select the most promising ones for the specific campaign. This will be fa-
cilitated by a clustering methodology that will classify assets into categories ranging from the best 
assets to utilise in a particular campaign to the worst ones. The classification will be performed based 
on applicable criteria which can indicatively include their amount of flexibility, location, reliability, 
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cost, etc. Clustering of important energy metrics per consumer (metrics include energy consumption, 
demand flexibility in absolute magnitudes, customer remuneration, fairness, etc.) will be performed 
independently on different time periods during the day. This quantization of time enables the aggre-
gator to focus on the desired time period and assess the benefits of the various assets at the period 
of interest. This eliminates the chance that asset characteristics that do not apply in the specific pe-
riod are taken into account (e.g. a home with significant flexibility during the evening cannot deliver 
any during mid-day when all occupants are away and all important loads are switched off). Per time 
period the clusters will probably comprise different assets. 

 

5.2.3 Work-flow 
 The WiseCOOP tool for the aggregator includes visualizations where demand response requests from 

DSOs are triggered as a time-series including all relevant information (e.g. relevant grid area) 

 In a second diagram in the same screen, the time-series of aggregated flexibility of all assets under 
the aggregator’s control is displayed 

 When the aggregator clicks on a specific DR request, he is led to a new screen which displays details 
of the specific request (power, time period, area). The second diagram changes to illustrate the ag-
gregated flexibility of the assets that fulfil the request constraints (e.g. grid area). The assets are 
clustered according to relevant criteria (potential flexibility, or other user selectable criterion from a 
pre-defined list). 

 The tool user selects the assets (or the tool automatically selects and proposes the most suitable 
assets based on a given objective function) that will be involved in the delivery of the desired flexi-
bility in response to the specific request. He selects as many assets as necessary or accepts the tool 
suggestion. The cumulative flexibility of selected assets as well as the remaining flexibility in order to 
cover the request requirements are shown in the user interface.  

 When a set of assets that fulfils all request requirements is selected, the tool estimates the corre-
sponding DR signals. 

 When the user clicks on a “Dispatch” button, the signals are dispatched to the assets and their de-
mand profile is modified. Alternatively, the tool user can specify to the tool at which time in the 
future to dispatch the signals in order to schedule a flex delivery campaign. The tool will dispatch the 
signals at the indicated time. 

5.2.4 Prerequisites 
 The WG Cockpit should generate Demand Response requests and distribute them via the WG IOP, 

eventually they will be received by WiseCOOP. 

 Availability of DR requests with all necessary information (power to be reduced/increased, network 
area, starting time and duration, etc.) 

 Definition of areas of the electricity network. Mapping of assets to the various network areas. 
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6 MODEL DEFINITION AND CALIBRATION 

6.1 INTRODUCTION TO FLEXIBILITY/ELASTICITY MODELS OF THE WISEGRID PROJECT 

The goal of WiseGRID is to develop advanced Consumers-Centric Demand Response schemes in order to 
empower energy users and at the same time provide flexibility to the distribution grid operators. In this 
chapter, we describe the flexibility models relevant to WiseGRID business cases and how they are related to 
demand response events. For explicit demand response events, flexibility models are described for batteries 
as well as comfort-based demand flexibility models that are deployed for buildings where low-level infor-
mation is available and control of devices is possible. For implicit demand response schemes, high-level price-
based demand elasticity models are described. 

WiseGRID estimates the demand flexibility available at the device level which preserves the visual and ther-
mal comfort boundaries of occupants. These are incorporated in the WiseCORP platform, and are continu-
ously correlated with indoor and outdoor environment conditions, energy consumption and operational 
characteristics of devices in order to define context-aware demand flexibility profiles. This sets the basis for 
the definition of optimized flexibility profiles of devices at building level that serve explicit demand response 
strategies. 

Additionally, this deliverable targets to propose appropriate models for price elasticity of demand in order 
to analyse and characterize the elasticity of demand in response to dynamic tariffs and financial incentive 
schemes. Such models are the basis upon which individual building profiles are inferred to provide accurate 
elasticity estimations for implicit demand response strategies. 

Lastly, WiseGRID incorporates models that reveal the energy needs of batteries and EVs along with their state 
of charge and discharging rates for appropriate flexibility provision. 

 

6.2 COMFORT-BASED DEMAND FLEXIBILITY MODEL 

6.2.1 Brief description 
As mentioned in the introductory section, this task designs comfort models based on occupant behaviour 
and proposes DER models for each type of device in order to analyse their response when subject to demand 
response events. This establishes a holistic demand flexibility modelling approach that examines demand-
side capability to participate in alternative demand response strategies that aim both at network operation 
and market participation optimization. The loads with greater capacity to provide energy demand flexibility 
are modelled; namely, HVAC and lighting devices, as these are the ones more appropriate and favourable 
with respect to DR capacity.  

In this section the focus is on the calculation of accurate models that take into account information related 
to events from user behaviour. These comfort preferences are crucial in defining robust and dynamic demand 
profiles, and lead to the delivery of Context-Aware Load Flexibility Profiles, reflecting real-time demand 
flexibility as a function of multiple parameters, such as time, device operational characteristics, environmen-
tal context/ conditions and individual/group occupant comfort preferences. The main idea behind this mod-
elling framework is the extraction of DER Flexibility Profiles as a function of contextual conditions and 
actions. Environmental conditions and user preferences are the driving forces that underlie the operation of 
devices (from building occupants). Towards this direction, these specific building dynamics have to be defined 
and incorporated as part of the DER Flexibility models. 

The role of the WiseCORP Explicit Demand Response framework is to broadcast the control strategies at 
building level by taking into account occupants’ profiles. This chapter focuses on the presentation of model 
parameters along with the definition of interfaces, while also providing details about the algorithmic frame-
work considered for the extraction of these configuration parameters. This is actually the objective of this 
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section, to provide the overall learning framework (models and algorithms) for the extraction of Context-
Aware DER and Flexibility Profiling Engine.  

6.2.2 Context-aware flexibility engine specifications 
The goal of this section is to give an overview of the algorithmic framework for the extraction/learning of 
the Context-Aware DER and Flexibility Profiling framework. Therefore, the focus of the work is on the presen-
tation of the algorithmic process towards the extraction of modelling parameters, its design and functional 
specifications.  

The design specifications for the different modules that consist of the Context-Aware Flexibility Profiling 
Engine are further presented in Figure 7. 

 

Figure 7 – WiseCORP: Context-Aware Engine Conceptual Architecture 

 Message Handler: As different types of events will be handled from the component, the role of the 
Message Handler is to organize the different types of events. More specifically, the module is a 
subscriber to the following event types: 
a) Indoor environmental conditions: namely luminance, temperature, humidity. The structure of the 

messages exchanged are defined in section 6.2.3; 

b) External environmental conditions: namely temperature and humidity as retrieved from available 

weather services; 

c) DER operational state for WiseGRID controllable devices: namely {status, dimming level} for light-

ing devices, {status, mode, set-point, etc…} for heating/cooling devices, {status} for dual state de-

vices;  

d) Energy Consumption data: real-time consumption status of the device. 
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 DER Modelling: various DER models are involved in explicit Demand Response (lighting and HVAC de-

vices); these will be modelled by the respective component. DER models contain the mathematical for-

mulas for the calculation of electric demand (consumption) of each DER type as a function of environ-

mental conditions and configuration parameters affecting DER’s operation. These are continuously 

updated according to the recorded environmental conditions and DER operational data retrieved; 

 User Profiling: this represents the comfort profiling learning framework and is amongst the core com-

ponents of the context-aware flexibility framework. It is responsible for learning and periodically updat-

ing the user’s profile based on environmental conditions events and occupants’ control actions; 

 Flexibility Forecasting: this module broadcasts the maximum available flexibility as described in section 

6.2.8, while it is also utilized by the Auto DR Business Logic component for scheduling the setpoints to 

be dispatched in accordance to a specific DR request;   

Prior to the abovementioned analytics process, the message structure and interfaces with sensors and de-
vices is defined, as well as the interface with the Asset Dispatcher. Thereafter, an overview is provided of DER 
Models along with their respective parameters, Comfort Profiling Learning framework and Flexibility models. 

It is clear that raw and processed information is required towards the extraction of accurate Context-Aware 
Flexibility Profiles. The definition of the aforementioned data types is in line with the overall objective of the 
profiling engine (…demand flexibility as a function of multiple parameters, such as time, device operational 
characteristics, environmental context/ conditions, occupant comfort preferences and health/ hygienic 
constraints…). 

6.2.3 Sensor and Devices Monitoring and Control Interfaces specification 

The following messages are proposed for the communication between the building sensors/devices and the 
DR framework in order to structure the information exchange, including all necessary meta-data such as 
timestamps, measurement units, human readable descriptions. Information is encoded using an OBIS-
compatible format in order to be easily converted to standardised communication protocols, if needed. The 
following messages are exchanged through the internal RabbitMQ service that acts as the internal 
middleware in WiseCORP between devices, sensors and WiseCORP components. 

 

Monitoring of Sensors and Devices 
“temperature sensor no.1 associated to SHIC01” 

 

=> TOPIC: ASSET01/SHIC01/0-1-96-9-0-1 

Document: 

{ 

    "_id" : "0-1-96-9-0-1", 

    "assetID" : "assetID", 

    "value" : "24.3", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2016-04-15T10:00:00Z"),  

    "description" : "Ambient temperature" 

} 

“luminance sensor no.1 associated to LUX01” 

 

=> TOPIC: ASSET01/LUX01/0-1-151-7-0-1 
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Document: 

{ 

    "_id" : "0-1-151-7-0-1", 

    "assetID" : "asset01", 

    "value" : <latest reading>, 

    "unit" : "lux", 

    "status" : "1",  

    "captureTime" : ISODate("2016-04-15T10:00:00Z"),  

    "description" : "Ambient light" 

} 

“luminance sensor no.1 that PROVIDES TEMPERATURE READINGS (combo)” 

 

=> TOPIC: ASSET01/LUX01/0-1-96-9-0-1 

Document: 

{ 

    "_id" : "0-1-96-9-0-1", 

    "assetID" : "asset01", 

    "value" : "24.3", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2016-04-15T10:00:00Z"),  

    "description" : "Ambient temperature" 

} 

 

Energy consumption of associated HVAC (SMART-PLUG) 

 

=> TOPIC: ASSET01/SPLUG01/0-1-165-7-0-1 

Document: 

{ 

    "_id" : "0-1-165-7-0-1", 

    "assetID" : "asset01", 

    "value" : [cumulative_active_power, cumulative_reactive_power],  as floats 

    “relatedOBIS” : ["1-1-1-8-0-255", "1-1-3-8-0-255"] 

    "unit" : "W", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "smartplug" 

} 

 

Energy consumption of associated HVAC (SMART-METER) 

 

=> TOPIC: ASSET01/SLAM01/0-1-165-7-0-1 

Document: 

{ 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 32 

 

    "_id" : "0-1-165-7-0-1", 

    "assetID" : "asset01", 

    "value" : [cumulative_active_power, cumulative_active_power],  as floats 

    “relatedOBIS” : ["1-1-1-8-0-255", "1-1-3-8-0-255"] 

    "unit" : "W", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "smartmeter" 

   } 

 

 

Control of IR A/C and LED devices  
Command of controlling HVAC devices 

 

TOPIC: ASSET01/SHIC01/0-1-160-7-0-1 

Document: 

{ 

    "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "23", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "serial / modbus / IR", 

    “mode”: “<heating|cooling>”, 

    "command" : "auto",  

    "state" : "manual"  

} 

"command" : "auto"   //indicates that the application which is identified as “auto” (i.e. auto DR) has requested a change to a new status; 
for example, “auto” if it is sent by auto DR application,  “manual” if it is requested by the user, “other” for other applications (asset dis-
patcher). 

"state" : "manual"  // this variable describes the current state (whose application sent the running command).  

If an off-value is sent (“status” : “0”), the setpoint is ignored. 

 

EXAMPLE request to internal rabbitMQ: 

 

TOPIC: ASSET01/SHIC01/0-1-160-7-0-1 

Document: 

{ 

    "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "25", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  
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    "description" : "IR", 

    “mode”: “cooling”, 

    "command" : "auto",  

    "state" : "manual"  

} 

 

EXAMPLE response to internal rabbitMQ: 

 

Content of MQTT message: 

{ 

   "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "25", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "IR", 

    “mode”: “cooling”, 

   "command" : "", // blank field indicates that the abovementioned message has been executed 

    "state" : "auto" // This is the current status of the device (after control command requested) 

} 

 

Commands for controlling a lighting device 

 

TOPIC: ASSET01/LED0X/0-1-163-7-0-1 

Document: 

{ 

    "_id" : "0-1-163-7-0-1", 

    "assetID" : "asset01", 

    "value" : "20", 

    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "led lamp", 

    "command" : "auto",  

    "state" : "manual"  

} 

 

EXAMPLE request to internal rabbitMQ 

Document: 

{ 

    "_id" : "0-1-163-7-0-1", 

   "assetID" : "asset01", 

    "value" : "20", 
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    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "led lamp", 

    "command" : "auto",  

    "state" : "manual"  

} 

 

EXAMPLE response from internal rabbitMQ. 

Document: 

{ 

   "_id" : "0-1-163-7-0-1", 

   "assetID" : "asset01", 

    "value" : "20", 

    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "led lamp", 

    "command" : "",  

    "state" : "auto"  

} 

 

 

After presenting the messages exchanged between the internal RabbitMQ implementation and the 
WiseCORP Explicit DR framework for monitoring and control, the interface between WiseCORP DR 
framework and Asset Dispatcher is presented. 

6.2.4 Interface with Asset Dispatcher 
In Section 6.2.3 the structure of messages exchanged between the internal RabbitMQ service and WiseCORP 
DR framework for monitoring and control of devices and sensors was defined. In this section, the interfacing 
of WiseCORP DR framework with the Asset Dispatcher is described.  

To put this in perspective, in case of an explicit demand response request, WiseCORP DR framework sched-
ules a campaign of setpoints for each device (assets in this context), in order to achieve the requested flexi-
bility request. These are broadcasted in the internal RabbitMQ and, thereafter, the BMS wrapper is respon-
sible for executing the requested signals. However, in order to calculate the flexibility available, the 
WiseCORP DR framework requires the current and future status of devices which define the baseline con-
sumption. These are provided by the Asset Dispatcher component (as shown in section 4.3). 

The Asset Dispatcher is responsible for dispatching signal campaigns to the available devices inside the prem-
ises and is driven by the Energy usage optimizer component; hence, provides setpoint schedules for each 
device for day-ahead that optimize energy usage of the building. Therefore, an interface between WiseCORP 
DR framework and the Asset Dispatcher is required. In the following table, an example for interfacing with 
the Asset Dispatcher on a publish/subscribe manner via the internal RabbitMQ implementation is presented: 

 

 

 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 35 

 

TOPIC : AssetDispatcher 

List of object with day-ahead timestamp on a per 15-minute interval for HVAC device: 

[{ 

   "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "23", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "serial / modbus / IR", 

    “mode”: “<heating|cooling>”, 

    "command" : "assetDispatcher",  

    "state" : "manual"  

}, 

{ 

   "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "24", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:15:00Z"),  

    "description" : "serial / modbus / IR", 

    “mode”: “<heating|cooling>”, 

    "command" : "assetDispatcher", 

    "state" : "manual"  

}, …,  

{ 

   "_id" : "0-1-160-7-0-1", 

    "assetID" : "asset01", 

    "value" : "23", 

    "unit" : "grdC", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T23:45:00Z"),  

    "description" : "serial / modbus / IR", 

    “mode”: “<heating|cooling>”, 

    "command" : "assetDispatcher",  

    "state" : "manual"  

}] 

"command" : "auto"   //indicates that the application which is identified as “auto” (i.e. auto DR) has requested a change to a new status; 
for example, “auto” if it is sent by auto DR application,  “manual” if it is requested by the user, “other” for other applications (asset dis-
patcher). 

"state" : "manual"  // this variable describes the current state (whose application sent the running command) 

 

List of object with day-ahead timestamp on a per 15-minute interval for lighting device: 

[{ 

   "_id" : "0-1-163-7-0-1", 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 36 

 

   "assetID" : "asset01", 

    "value" : "20", 

    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:00:00Z"),  

    "description" : "led lamp", 

    "command" : "assetDispatcher",  

    "state" : "manual"  

}, 

{ 

   "_id" : "0-1-163-7-0-1", 

   "assetID" : "asset01", 

    "value" : "20", 

    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T00:15:00Z"),  

    "description" : "led lamp", 

    "command" : "assetDispatcher", 

    "state" : "manual"  

}, …, 

{ 

   "_id" : "0-1-163-7-0-1", 

   "assetID" : "asset01", 

    "value" : "20", 

    "unit" : "%", 

    "status" : "1",  

    "captureTime" : ISODate("2017-03-01T23:45:00Z"),  

    "description" : "led lamp", 

    "command" : "assetDispatcher"  

    "state" : "manual"  

}] 

 

All the necessary monitoring and control interfaces that are required in order to collect real-time indoor 
environmental conditions and devices’ operational characteristics have been defined. In the next section, the 
configuration parameters required for the definition of DER models deployed in WiseGRID are presented. 

6.2.5 DER models configuration parameters  
The DER models contain the mathematical formulas for the calculation of electric demand (consumption) of 
each DER type as a function of dynamic (input data) and static (configuration) parameters affecting DER op-
eration. ANNEX A gives an overview of the required initial configurations for each device at each building. 

For example: the DER model for an HVAC system contains the mathematical model that calculates the power 
consumption of the HVAC given its characteristics (rated power, efficiency, thermal characteristics of the 
building) and inputs that change dynamically (temperature set point, indoor and outdoor temperature etc.). 
In addition to energy consumption data, the enhanced DER models defined in the project further incorporate 
as an output parameter the impact of each DER on indoor environmental condition. 
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The enhanced model parameters (input/configuration/output) for the demand side device types (lighting, 
HVAC, plugs) examined in the project are presented next. 

Light Devices 

Table 2 – Light Device DER Model 

Here an extra configuration parameter (CoefF) which is an outcome of the learning process presented in the 
next section is defined.   

 

Plug/ Switch Device Model 

An ON/OFF plug appliance is any device used that consumes electric energy and the operation is based on 
the status of the device. An appliance has a rated power, but the real consumption of the appliance depends 
on the use at any given time. Therefore, the real power that the appliance consumes is given by the utilization 
factor that depends on the usage of the respective appliance. 

Parameter Description Units Type 

Configuration parameters 

type Type of lighting: incandescent, fluorescent, halogen, 
CFL and LED. 

-- String 

Nominal_power Rated lamp power W float 

CoefF The factor expressing the impact of the lamp in the lu-
minance sensor  

lux float 

Input parameters 

status Current status of the lighting b: 0 (OFF), 1 (ON).  -- boolean 

dimming factor Percentage of the rated power that is being con-
sumed. It is directly linked to the brightness provided 
by the light even if it is not linearly proportional 

% float 

Output parameters 

Power Estimated power consumption of lighting W float 

Luminosity Estimated luminosity due to lighting device lux float 
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Table 3 – Plug/ Switch DER Model 

HVAC Device Model 

The load type with the highest potential on Demand Response programs is the HVAC device. There are two 
different types of HVAC units examined in the project (ON - OFF heat pumps & Inverter Type Heat Pumps) 
and thus we need to address the different cases in our models.  

The Inverter technology (DC) is the latest evolution of technology concerning the electro motors of the com-
pressors. An Inverter is used to control the speed of the compressor motor, so as to continuously regulate 
the temperature. The DC Inverter units have a variable-frequency drive that comprises an adjustable electri-
cal inverter to control the speed of the electromotor, which means the compressor and the cooling / heating 
output. The drive converts the incoming AC current to DC and then through a modulation in an electrical 
inverter produces current of desired frequency. A microcontroller can sample each ambient air temperature 
and adjust accordingly the speed of the compressor. The inverter air conditioning units have increased effi-
ciency in contrast to traditional air conditioners, extended life of their parts and the sharp fluctuations in the 
load are eliminated.  

 

Figure 8 – HVAC set point baseline [3] 

In general, it can be said that an inverter air conditioner is always more appropriate than a standard, on-off 

one. To better understand the difference, let us focus on what happens during the operation, with regards 

to the energy consumption. An on-off air conditioner absorbs a certain number of watts and then switches 

off when it reaches the set temperature, returning the consumption or absorption level to zero. An inverter 

conditioner instead has variable rate of absorption; it adapts to environmental conditions by modulating the 

energy consumption within a range, varying from minimum to maximum, which goes beyond its nominal 

power consumption. 

Parameter Description Units Type 

Configuration parameters 

type Type of device: printer, home appliance  -- String 

Nominal_Power Nominal power of the office appliance W float 

Input parameters 

status Current status of appliance: OFF, ON. -- Boolean 

Utilization factor Percentage of the nominal power that is being con-
sumed.  

% float 

Output parameters 

Power Estimated power consumption of the office appliance W float 
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Figure 9 – HVAC energy consumption curve [4] 

Within WiseGRID project, where the main objective is the implementation of DR strategies, both types of AC 
units will be examined. It is not obvious beforehand which is the type of technology in each pilot site, thus 
we have selected a generic DER model for HVAC devices. 

The HVAC DER models the consumption of the system as a function of heat demand. The heat demand is 
therefore calculated, addressing the thermal model of each zone examined. The Thermal model contains the 
thermal characteristics of a building area together with the heat gains produced by the context environment 
in the area and the desired temperature set point.  

Table 4 – HVAC DER Model 

 

A Thermal Zone represents the thermal losses and gains of a building area which is controlled by a thermo-
stat. A Thermal Zone contains a set of construction elements describing how the heat is transferred from one 
area to another area (heat gain due to solar radiation, heat gain due to construction elements, heat gain due 
to ventilation/infiltrations), also the loads and the occupants of the thermal Zone need to be considered since 
they act as heat producing elements. All these elements together with the desired temperature set point in 

Parameter Description Units Type 

Configuration parameters 

operation mode Operation mode of the HVAC system: cooling, heating. -- String 

cooling capacity Cooling capacity of the HVAC system W float 

heating capacity Heating capacity of the HVAC system W float 

cooling efficiency Cooling efficiency of the HVAC system (EER) Wt/We float 

heating efficiency Heating efficiency of the HVAC system (COP) Wt/We float 

Input parameters 

status Status/Mode/Set-point  -- Complex 

heat demand Heat demand of the thermal zone. The heat demand is calcu-
lated in the Thermal Zone model 

-- Complex 

interior temperature Internal temperature in the thermal zone at the initial time ºC float 

Output parameters 

Power Estimated power consumption of the HVAC system W float 

final temperature Estimated final temperature in the thermal zone ºC float 
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the Thermal Zone define the required parameters to obtain the heat demand that is used as input for the 
HVAC DER.  

As this information is not easily retrieved (in real-time), a simplified data driven approach is adopted for 
modelling heat demand in the project. This is the common case in the literature [5] [6], towards accurately 
estimating the potential of thermostatically control loads to participate in Demand Response Programmes. 
The modelling/configuration parameters that specify the heat demand of each building zone are presented 
in the following table:   

 

Table 5 – Heat Demand Model parameters 

 

Along with the definition of DER model parameters as presented above, the model parameters for demand 
flexibility profiles should be presented. The proposed framework is considered as context-driven, and thus 
the incorporation of human preferences and environmental conditions is a main prerequisite for the defini-
tion of flexibility profiling engine. Therefore, the first objective is to define occupants’ comfort profiling mod-
els that will be further incorporated in the algorithmic process towards the extraction of DER flexibility values.  

An overview of the enhanced profiling framework (input/ output/ configuration parameters) is presented 
here: 

Table 6 – Occupants Comfort model parameters 

 

Therefore, the comfort model is a 2xN dimensions table that handles all possible combinations of {indoor 
environmental conditions  discomfort level of occupants}. Therefore, a non-parametric model (expressed 
in a tabular format) is adopted for managing the comfort boundaries of the users. 

Having clearly defined the different models that consist of the proposed framework, we proceed with the 
definition of the algorithmic framework (learning process) towards the extraction of these modelling param-
eters (DER and comfort). This is actually the goal of the work performed in WP10, to provide the analytics 
engine over the streams of raw data that will enable us to extract accurate DER and comfort profiling model; 
to be further incorporated for the extraction of the dynamic WiseGRID Context-Aware DER Flexibility profiles. 
The algorithmic framework for the extraction of these profiles is documented in the following sections. 

 

Heat Demand Model parameters 

C Thermal capacitance of the building zone kWh/oC float 

R Thermal resistance of the building zone oC/kW float 

Parameter Description Units Type 

Configuration parameters 

type Thermal for HVAC, visual for Lighting -- String 

Device ID Associated device  ID ID 

Input parameters 

Indoor Env. Indoor environmental condition ºC or lux Float 

Output parameters 

Utility Function  Discomfort Level expressed in terms of Utility function Non di-
mension 

float 
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6.2.6 DER models calibration and profiling  
Following the presentation of DER model parameters in the previous section, the focus of this section is on 
the definition of learning framework for the extraction of the configuration parameters. The analysis is again 
performed first for the DERs and then for the contextual aspects (comfort settings) incorporated in the pro-
posed framework.  The analysis covers the different types of demand side load types examined in the project. 

Light Device Type 

The light device model is defined as: “consumption as a function of status and dimming level”. Therefore, the 
learning model is based on the definition of the average consumption values for the different device status 
and dimming levels.  

The mathematical formula for lighting device consumption is: 

 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 ∗ 𝑆𝑡𝑎𝑡𝑢𝑠 ∗ 𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 (1) 

A regression analysis is performed to correlate input (dimming level & status) and output (consumption) 
values towards correcting the configuration (Nominal_power) factors. The regression analysis technique is 
briefly presented. 

Linear regression attempts to model the relationship between two variables by fitting a linear equation to 
observed data. One variable is considered to be an explanatory variable, and the other is considered to be a 
dependent variable. A linear regression line has an equation of the form Y = a + bX, where X is the explanatory 
variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when 
x = 0). 

The most common method for fitting a regression line is the method of least-squares. This method calculates 
the best-fitting line for the observed data by minimizing the sum of the squares of the vertical deviations 
from each data point to the line (if a point lies on the fitted line exactly, then its vertical deviation is 0).  
Therefore, given a random sample from the population, we estimate the population parameters and obtain 
the sample linear regression model. 

Once a regression model has been fit to a group of data, examination of the residuals (the deviations from 
the fitted line to the observed values) allows the modeller to investigate the validity of assumption that a 
linear relationship exists. Plotting the residuals on the y-axis against the explanatory variable on the x-axis 
reveals any possible non-linear relationship among the variables. For the lighting devices, the slope parame-
ter b is the Nominal_power factor. 

The complex part of the learning process is the extraction of lighting device impact on luminance level, (to-
wards the provision of enhanced DER profiles).  Caicedo et al. [7] proposed a framework for the disaggrega-
tion of illuminance levels on ambient luminance and luminance contribution from lighting devices.  We 
consider a lighting system in an indoor office, with N light sources and the associated luminance sensors.  The 
average net illuminance 𝑤𝑚 at a single (mth) zone in the zone, given that the lighting system is at dimming 
vector d, may be written as 

 𝑤𝑚 = 𝑣𝑚 𝑑 + 𝑢𝑚 (2) 

Where 𝑣𝑚 𝑑 =  𝐻𝑚,𝑛𝑑𝑛
𝑀
𝑛=1  and 𝑢𝑚 are the illuminance contributions due to lighting system and daylight 

at the mth zone, respectively.  

Here, 𝐻𝑚,𝑛 > 0 is the illuminance contribution to the average on the mth zone when the nth light source is at 
maximum intensity. Denote 𝐻 to be a matrix whose (m, n)th element is 𝐻𝑚,𝑛. In most of the installation cases 
where luminance sensor is installed on the ceiling, Illuminance values at the workspace place however cannot 
be measured; only illuminance measurements at light sensors are available following the sensor installation 
as depicted in the next figure (ceiling installation).  
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Figure 10 – Illuminance at workspace plane [7] 

 
Therefore, the measured illuminance at a light sensor in the ceiling is the net illuminance due to contributing 
light sources and daylight reflected from the objects (e.g. furniture) in the office. Denote 𝐸𝑚,𝑛 the measured 
illuminance at the mth light sensor when the nth light source is at maximum intensity, in the absence of day-
light. We assume that the illuminance scales linearly with the dimming level. This assumption holds well 
for practical light sources, e.g. LED light sources [7]. The net illuminance at the mth sensor at the ceiling, 
given that the lighting system is at dimming vector d and under daylight, can then be written as 

 
𝐼𝑚 𝑑, 𝑠𝑚 =  𝐸𝑚,𝑛𝑑𝑛 + 𝑠𝑚

𝑃

𝑛=1

 (3) 

 

Where  𝐸𝑚,𝑛𝑑𝑛
𝑃
𝑛=1  is the illuminance due to the lighting system and 𝑠𝑚  is the illuminance due to daylight 

measured at the mth sensor, as seen in Figure 11. In practice, the mappings 𝐸𝑚,𝑛 may be computed a priori 

in a calibration phase by turning on the light sources to the maximum intensity one at a time and measuring 
illuminance values at the light sensors. Further, we can relate the average illuminance values at the work-
space plane and illuminance values at light sensors by 

 
 𝐸𝑚,𝑛𝑑𝑛 =  𝐺𝑚,𝑝𝐻𝑝,𝑛𝑑𝑛

 

𝑝

 

𝑛

 

𝑃

𝑛=1

 (4) 

 

 
𝑠𝑚 = 𝐺𝑚,𝑝𝑢𝑝

 

𝑝

 (5) 

 

Where 𝐺𝑚,𝑝 > 0 is the illuminance contribution at the mth light sensor when the average illuminance at the 

pth zone due to the nth light source is at the maximum. 
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Figure 11 – Illuminance at light sensor [7] 

 

In the WiseGRID case, we define single zones with one luminance sensor installed. Therefore, the parameters 
of the model presented above are simplified, considering the different controllable lamps and natural sources 
as the input parameters of the model.  

Through analytics over historical data (luminance values and dimming levels) the 𝐺1,1𝐻1,𝑛 (n-vector, where 

n is the number of lighting devices installed) factor is calculated. This is the Coeff parameter for each lighting 
device as presented in the model section above, expressing the impact context parameter of a specific light-
ing device in luminance level. Then, the external luminance level impact is calculated as: 

 
𝑠 = 𝐼 𝑑, 𝑠 − 𝐺1,1𝐻1,𝑛𝑑𝑛

𝑁

𝑛=1

 (6) 

Where: 𝐼 𝑑, 𝑠 :  luminance sensor values 

  𝐺1,1𝐻1,𝑛𝑑𝑛
𝑁
𝑛=1 :  modelled based calculation of artificial lighting impact to a single lux sensor  

 

To sum up, the lighting DER model parameters are defined by: 1) calculating the energy profile as a function 
of status/dimming level 2) calculating the impact on luminance level as a function of status/dimming level, 
following the algorithmic process as presented above. 

 

Plug/ Switch Device Type 

The Plug device model is defined as: “consumption as a function of operational status". Therefore, the learn-
ing model consists of the definition of energy consumption for each plug/switch device operational status.  

outputPThe formula for  calculation is: 

 FactornUtilizatioStatusPNomialPoutput __   (7) 

Again, the regression analysis technique is utilized towards correcting the Nominal_Power values by analys-
ing: 

outputP : sub-metering information 

Status rUtil_Facto& :  plug/switch sensor information 

The outcome from the learning process (linear regression analysis) is the Nominal_Power value (which in 
most of the cases is identical to the value defined by the device manufacturer). 
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HVAC Device Type 

This is the most complex device type examined in the project as different parameters affect the HVAC oper-
ation performance. While indoor temperature data are available from temperature sensor installed in prem-
ises, heat demand data (as a function of heat gain from solar radiation, occupants, construction elements, 
ventilation, infiltration) cannot be easily calculated.  Therefore, we need to adopt a simplified model that 
incorporates the heat demand profiling parameters as part of the model. 

The model proposed in [5] and [6] is adopted towards modelling and controlling thermostatically controlled 
loads for participation on demand side management strategies. 

The dynamic behaviour of the temperature 𝜃 𝑡  of a thermostatically controlled cooling-load (TCL), in the 
ON and OFF state and in the absence of noise, can be modelled by: 

 

𝜃 𝑡   
−

1

𝐶𝑅
 𝜃 − 𝜃𝑎𝑚𝑏 + 𝑃𝑅 ,𝑂𝑁 𝑆𝑡𝑎𝑡𝑒

−
1

𝐶𝑅
 𝜃 − 𝜃𝑎𝑚𝑏 , 𝑂𝐹𝐹 𝑆𝑡𝑎𝑡𝑒

 (8) 

Where 𝜃𝑎𝑚𝑏 is the ambient temperature, 𝐶 is the thermal capacitance, 𝑅 is the thermal resistance, and 𝑃 is 
the power drawn by the TCL when in the ON state. 

In steady state, the cooling period drives a load from temperature 𝜃+ to temperature 𝜃−. Thus solving with 
initial condition 𝜃0 = 𝜃+ gives 

 𝜃 𝑡 =  𝜃𝑎𝑚𝑏 − 𝑃𝑅  1 − 𝑒−
1

𝐶𝑅 + 𝜃+𝑒
−

1

𝐶𝑅 (9) 

The same approach is considered for heating devices where rated power is −𝑃. 

Therefore, the calculation of the final temperature is a mixture of input context conditions (indoor air tem-
perature & ambient air temperature) and configuration parameters (𝐶, 𝑅, 𝑃, set point). 

Therefore, the learning process consists of the extraction of 𝐶, 𝑅 parameters that set the thermal demand 
parameters of each building zone examined.  The 𝐶 parameter further incorporates the time factor, towards 
simulating HVAC operation through the period of the time. Taking into account HVAC historical data for a 
short training period, the configuration parameters𝐶, 𝑅 are calculated.  

The learning framework for the extraction of the enhanced device models was presented in the previous 
section.  A training period, gathering data from the physical devices is required towards the extraction of the 
modelling parameters. By having defined these parameters after the learning process 1) model parameters 
can be periodically updated by taking into account recent data and 2) enhanced real-time DER instances can 
be provided (by taking into account the input & configuration parameters), further facilitating the DER oper-
ation simulation under different contextual conditions.  

In the next section, the learning process and the framework of Comfort Profiling engine, incorporated in the 
project for the extraction of device specific demand flexibility profiles, is presented. 

6.2.7 Comfort Profiling Learning Framework 
The focus of this section is on the definition of the learning framework for the extraction of Comfort Profiles. 

Towards the extraction of comfort profiling parameters, environmental conditions events and occupants’ 
control actions are incorporated in the learning framework. We review again the data types considered for 
training purposes (as retrieved from the internal RabbitMQ implementation): 

 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 45 

 

Table 7 – Environmental Event  

 

Table 8 – Control Action Event  

 

Following the high-level taxonomy of events to environmental and control actions, the core part of the com-
fort profiling framework is the definition of the different types of preferences to be examined in the project. 
We have already defined the most important comfort models that set the baseline for the WiseGRID frame-
work: 

 Thermal Comfort Profiling. Thermal comfort is the condition of mind that expresses satisfaction with the 
thermal environment and is assessed by subjective evaluation (ANSI/ASHRAE Standard) [8]. Maintaining 
this standard of thermal comfort for occupants of buildings or other enclosures is one of the most im-
portant goals of HVAC (heating, ventilation, and air conditioning) design engineers. The Predicted Mean 
Vote (PMV) model is the main model considered for quantification of comfort level [9]. In WiseGRID, an 
adaptive model is addressed, considering indoor temperature and HVAC control actions the main param-
eters of the proposed model adapting in this way in the user preferences. 

Parameter Description Units/Format Type 

_id The sequence number of sensor - ID 

assetID The unique id of the premises - ID 

value The metric value of environmental event Temperature or lumi-
nance value 

Float 

unit Type of environmental event (Unit type) [oC or lux] string 

status Status of sensor (0: inactive, 1: active) 0/1 Integer 

captureTime Time period of the event YYYY-MM-DD hh:mm:ss ISODate 

description Description of the environmental event Ambient Temperature / 
Ambient Luminance 

string 

Parameter Description Units/Format Type 

_id The sequence number of device - ID 

assetID The unique id of the premises - ID 

value The respective Control Action on the device, 
triggering change on set-point 

Temperature setpoint or 
dimming level 

Float 

unit Type of event (Unit type) [oC or dimming level] string 

status The Control Action on the device, triggering 
change on status (0: close, 1: open) 

0/1 Integer 

captureTime Time period of the event YYYY-MM-DD hh:mm:ss ISODate 

description Description of the environmental event Ambient Temperature / 
Ambient Luminance 

String 

command Application triggering setpoint change (or null if 
no change – monitoring) 

auto / manual / other / “” String 

state Application triggered previous setpoint change auto / manual / other String 
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 Visual Comfort Profiling. Visual comfort and discomfort levels of occupants is an obscure concept be-
cause of the multitude variables involved and the difficulty of reconciling aesthetic and physiological el-
ements. Most visual discomfort metrics have been derived under controllable conditions in lab environ-
ment and represent an average over the subjects, without making any provision for adaptation to 
individual needs [7] [10] [11]. Therefore, it is mandatory to develop a framework in which visual discom-
fort can be expressed addressing individual needs and preferences. In WiseGRID framework, we propose 
a method to calculate a visual comfort probability in a specific zone, relying exclusively on the observa-
tion of the users' actions in premises. This user-adaptive approach is delivered as part of the WiseGRID 
Comfort Profiling framework and defines the visual comfort and discomfort levels of individuals under 
different luminance conditions. 

We select the Bayesian networks as the algorithmic framework for extraction of comfort profiles. The anchor 
point of the proposed approach is the estimation of user’s discomfort from a statistical study of his past 
behaviour. More specifically, Bayes’ theorem is applied to estimate a Bayesian Discomfort Probability [12] 
as a function of the temperature/luminance distribution in each building zone. We first set a review of Bayes-
ian statistics and then we discuss how these can be applied in our case.  

In statistics, Bayesian inference is a method of inference in which Bayes' rule is used to update the probability 
estimate for a hypothesis as additional evidence is acquired. Bayesian updating is an important technique 
throughout statistics, and especially in mathematical statistics. Bayesian inference has found application in a 
range of fields including science, engineering, philosophy, medicine and law.  

A more concrete description of the Bayesian inference follows. Bayesian inference is what we do when we 
infer that a state A must be true because we have observed state B and that A and B usually happen together. 
For example, if we see a lion at a circus show we can infer that it must be tame, because all tame lions we 
have seen were part of a circus show, and we have never seen a wild lion in such a show. Series of experi-
ments have successfully demonstrated that the human brain carries a built-in prior probability curve for dif-
ferent kinds of events, which is updated as new evidence becomes available.  

It was Reverend Thomas Bayes (1702–1761) who first discovered what is now known as Bayes’ theorem: 
given two events, denoted by A and B, the following holds: 

 Pr(B| A)* Pr(A)
Pr(A| B)=

Pr(B)  

(10) 

Where Pr(A) stands for the probability of event A and Pr(A|B) stands for the conditional probability of A 
knowing that B has happened. Pr(B) can be expanded, yielding the same theorem in another form: 

 Pr( | )*Pr( )
Pr( | )

Pr( | )Pr( ) Pr( | )Pr( )

B A A
A B

B A A B A A


  

(11) 

Where Pr(Ā) stands for the probability of A not happening. Bayes’ theorem deals with only two events, but 
Bayesian networks link together an arbitrary number of events believed to exert a probabilistic influence on 
each other. Consider the following example, adapted from Korb and Nicholson (2003) [13]: a patient’s 
chances of developing lung cancer are assumed to depend exclusively on whether they live in a polluted area, 
and on whether they smoke. Similarly, having cancer will determine the chances of an X-ray test to be positive 
and will also affect the chances of the patient developing a breathing condition known as dyspnoea. The 
probabilistic influences exerted among these events are shown in Figure 12. 
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Figure 12 – Bayesian Inference Approach- Reference Example [12] 

 

Here the conditional probabilities are given explicitly, and successive applications of Bayes’ theorem allow us 
to determine any other probability. For example, without knowing whether the patient exhibits dyspnoea 
and without the results of an X-ray test, the probability of any patient having cancer is: 

      Pr( ) Pr C  T | P  H,S  T Pr P  H Pr S TC T       

      Pr C  T | P  H,S  F Pr P  H Pr S F       

      Pr C  T | P  L,  S  T Pr P  L Pr S T       

      Pr C  T | P  L,  S  F Pr P  L Pr S F      

(12) 

Where, 

  Pr C  T : The probability of cancer. 

  Pr P  H : The probability of high air pollution. 

  Pr S  T : The probability of being a smoker. 

Based on the statistical values as depicted in the schema, we calculate the probability Pr(C = T) = 0.012. 

Bayesian inference has emerged in recent years as a particularly promising form of artificial intelligence and 
has gained a solid foothold in different application domains.  

The central point of our claim in the project is that if (even naive) Bayesian classifiers are so good at calculat-
ing probabilities, then they should also be able to calculate the probability for a certain environment of being 
comfortable or uncomfortable to its occupant. Such a classifier should base its judgment on the physical 
variables it measures and classify the zone examined as comfortable or not. In particular, this classifier will 
look for correlations between different types of discomfort levels and environmental parameters towards 
the extraction of accurate behavioural profiles. The principle for the extraction on behavioural profiles based 
on zone settings and user preferences is provided: 

Environment Conditions, Controls & Settings  [Profiling Engine]  Comfort parameters 
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The next sections presents the project specific implementation of Bayesian networks in the WiseGRID case 
towards the definition of visual and thermal preference profiles. 

Visual Comfort Bayesian networks 

As a first step, we continuously record the measured luminance levels, further associated with user actions. 
If we denote as: 

 C: Event “User being comfortable” 

 E: Illuminance level 

 T: True Indication & F: False Indication as the possible values for C 

 e: possible illuminance value for E parameter 

We can estimate based on the available data the following parameters: 

 Pr E = e|C = F , which is the Probability Density Function (PDF) when an abnormal comfort situa-

tion is considered. 

 Pr E = e|C = T , which is the PDF when a normal comfort situation is considered.  

If E is a discrete variable we should simply count the number of times it realized each value and divide it by 
the total number of events. If E is a continuous variable, it is, strictly speaking, a probability density we must 
estimate. The simplest density estimator is a classic histogram but the choice of bin width can influence the 
resulting density estimate. Therefore we are selecting a more sophisticated density estimator process named 
as “taut-string” [14]. This is a nonlinear density estimator, which is locally adaptive, like wavelet estimators, 
and positive everywhere, without a log- or root transform. This estimator is based on maximizing of a non-
parametric log-likelihood function regularized by a total variation penalty. 

In Figure 13, an example of the estimated density of illuminance level for a typical building zone when dis-
comfort, Pr E = e|C = F  is shown. The data points (users’ control) are represented beneath each density 
curve as small ticks.  

 

Figure 13 – Probabilistic Density Function for true comfort settings [12] 

 
The users are remarkably consistent in that the illuminance levels most often observed to trigger a user ac-
tion, for example dimming up the lights, are below about 200 lux, or higher than 3000 lux, where dimming 
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down the lights is more often seen. In other words, only very dark or very bright situations prompt user 
actions (either these are dimming up or dimming down the lights). Similarly, the distribution of illuminances 
resulting from user actions tends to cluster around a value of about 400-500 lux. Again, the users are con-
sistent among each other.  

From the aforementioned two curves, we may now apply Bayes’ theorem and derive Pr(C = False | E = e), i.e. 
the probability of user discomfort as a function of illuminance level. The estimation of PDF function is de-
picted: 

 
Pr C = F| E = e =

Pr E = e|C = F ∗ Pr C = F 

Pr E = e|C = F ∗ Pr C = F + Pr E = e|C = T ∗ Pr C = T 
 (13) 

The Pr C = F  term, named to Bayesian formalism as the prior, is defined as such that in the absence of any 
prior information it is safe in most cases to set Pr C = F  = Pr C = T  = 0.5 [12]. 

  
Figure 14 – Visual Discomfort Probability Function  

An indicative output curve is shown in Figure 14. A turning point at around 110 lux is depicted showing the 
maximum comfort/minimum discomfort level. The output curve is assumed to have the above monotonicity 
with a single boundary showcasing that a user’s comfort is decreasing when below the learnt visual comfort 
threshold, and increasing when above it.  

An overview of algorithmic framework for the extraction of visual comfort behavioural profiles is presented 
in the following: 
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Thermal Comfort Bayesian networks 

Thermal comfort is defined in terms of the perception of satisfaction that a subject experiences in a given 
thermal environment. Probably, the most influential standards for designing an indoor environment of ther-
mal comfort have been developed by ASHRAE, the International Organization for Standardisation (ISO) [8], 
and the European Committee for Standardisation (CEN) [15]. The sensation of thermal comfort is found to 
be dependent on six environmental and physical factors: air temperature, radiant temperature, air speed, air 
humidity, and metabolic rate as well as clothing level of the subject. Based on these factors, mathematical 
expressions of a thermal sensation index, the Predicted Mean Vote (PMV) is delivered, for predicting the 
percentage of dissatisfied occupants against certain indoor environments were proposed.  

The aforementioned model is generic and cannot cover the specificities of each case scenario examined. 
Therefore, an adaptive thermal approach is proposed to optimise the comfort acceptance of end users. A 
Bayesian adaptive comfort temperature approach is proposed for WiseGRID needs in order to predict the 
desired temperature setpoints for an air-conditioned space according to the occupants’ complaints about 
thermal discomfort. In particular, measured system settings and complaint records are used as input param-
eters to demonstrate the proposed algorithm in determining the optimum temperature set point for the 
HVAC system. 

The main differentiation from luminance framework (as presented above) is that parameter E is a discrete 
variable. Thus, the thermal discomfort function is extracted as a discrete probability density function and 
each value will define the utility parameter (Utility function) for thermal preferences. The next table presents 
the details of algorithmic framework for thermal preferences. 

Input Parameter 

Illuminance value (lux: as measured by luminance sensor). User control actions on lighting devices trigger 
environmental events. Based on correlation of control actions with luminance data, we can define 
comfort and discomfort visual states. 

Algorithmic Framework 

Extraction of probability functions: Pr E = e|C = T  & Pr E = e|C = F  based on available data. Input 
parameters for probability functions estimation are: 

- E: illuminance state 

- e: illuminance data 

- C: Event “user being comfortable” 

Output 

The PDF function Pr C = F| E = e  expresses the discomfort value on a state condition for the single 
occupant.  
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By taking into account input data, we infer the thermal profiling curve. Information retrieved from interaction 
and non-interaction of the users with the system under different environmental conditions, set the datasets 
further considered in our Bayesian analytics process for the extraction of the associated utility functions.  

The overall analysis is performed in a dynamic way, setting different weights on the events examined at the 
analytics process in order to further address the seasonal aspect of thermal profiling. For the selection of the 
appropriate weights we take into account the ASHRAE standards for adaptive thermal models (as further 
adapted in EU with EN 15251: Indoor Environmental Criteria standard). 

The adaptive model is based on the idea that outdoor climate influences indoor comfort because humans 
can adapt to different temperatures during different times of the year. Numerous researchers have con-
ducted field studies worldwide in which they survey building occupants about their thermal comfort while 
taking simultaneous environmental measurements. These results were incorporated in [8] as the adaptive 
comfort model. The adaptive charts relate indoor comfort temperature to prevailing outdoor temperature 
and define zones of 80% and 90% satisfaction. The following figure presents the correlation of outdoor-in-
door environmental (temperature) conditions: 

Input Parameter 

Indoor Temperature value (as measured by temperature sensor). The user control actions on HVAC units 

trigger an environmental event. Based on correlation of control actions with indoor temperature condi-

tions we can define comfort and discomfort states. 

Algorithmic Approach 

Extraction of probability functions: Pr E = e|C = T  & Pr E = e|C = F  based on available data. Input 

parameters for probability functions estimation are: 

 E: Temperature state 

 e: Temperature data 

 C: Event “user being comfortable” 

Output 

The PDF function Pr C = F| E = e  expresses the discomfort value on a state condition for the single 

occupant.  
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Figure 15 – Observed and predicted indoor comfort temperatures from RP-884 database, for HVAC buildings 
(ASHRAE) [8] 

 

A pilot site-specific fitted curve is defined in the project, facilitating that way the adaptiveness of the comfort 
profiling models in the actual environmental conditions. 

The aforementioned analysis highlighted the training process for the extraction of comfort profiling model 
parameters. The outcome of this process is the extraction of thermal and visual (dis)comfort levels (expressed 
in terms of a Utility function) as a function of internal environmental conditions. Especially for thermal com-
fort profiles, the analysis is provided in 2-steps, 1) extraction of users comfort levels as a function of environ-
mental conditions and 2) adaptiveness of thermal comfort values by incorporating also outdoor environmen-
tal conditions in the analytics process.   

An indicative output curve for thermal comfort is shown in Figure 16. In this case, thermal comfort is two-
side bounded reflecting the stronger impact that thermal conditions have on the user.  
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Figure 16 - Thermal Discomfort Probability Function 

As a next step of the work, by incorporating this contextual information to the semantically enhanced DER 
models presented above, the context based demand flexibility profiles can be extracted. 

6.2.8 Integrated Demand Flexibility Profiles Framework 
Following the extraction of the DER and comfort profiles, the definition of WiseGRID Demand Flexibility Pro-
filing Framework is described. It should be pointed out that there is no static approach that describes the 
Demand Flexibility profiling framework, rather a dynamic method is adopted for calculating the Demand 
Flexibility values, taking as input parameters the different demand and comfort profile models as presented 
above. 

DER Flexibility Engine: This is the software module of the WiseGRID Demand Flexibility Engine that 
incorporates the algorithmic process towards the extraction of demand flexibility profiles. The DER model 
parameters (DER Modelling) further enhanced with (near) real-time environmental and behavioural 
characteristics (User Profiling) enable the extraction of the amount of demand flexibility that each specific 
device may offer to the WiseGRID system. The data representation of the DER Flexibility Engine is presented 
in the next figure 

 

Figure 17 – DER Flexibility Modelling Framework  

 

Where: 
- Set point: is the operational point of the device,  

- Time-period: is the associated time-period for the set-point operation 

- Comfort: is the instance of the comfort profiling mechanism as presented above 
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- Flex_Amount: the amount of demand flexibility associated with the selected set point operation.  

The algorithmic framework for the extraction of Flex_Amount is: 

 

% DER Flexibility Modeling Engine 

for i=1:Devices 

  for j=1:Setpoint 

    Actual_Consumption(j)=DER_Model(Device(i), Potential_Setpoint); 

    Baseline_Consumption(j)=DER_Model(Device(i), Current_Setpoint); 

    Context=DER_Model(Device(i), Setpoint); 

    Comfort(j)=Building_Comfort(Device(i),Context); 

    Flex_Amount(j)=Baseline_Consumption(j)-Actual_Consumption(j); 

  end 

end 

 

The overall analysis takes into account technical and operational constrains towards the evaluation of 
different control alternatives. The role of this module is to calculate the potential of controllability of each 
device type and this information is further available for exploitation at building and portfolio level. 

Interfaces specification  

The Auto DR Business Logic subscribes to Flexibility Forecasting to receive the potential of demand 
flexibility/controllability of the different device types. This is an online service that periodically updates the 
potential of controllability. (Predefined time-periods: 15 minutes, 30 minutes). 

The following message type is available for explicit DR strategies within WiseCORP and at WiseCOOP for the 
optimization process at building and at portfolio-level, respectively. 

Message Type: JSON message with the list of provision of flexibilities for each setpoint, per interval and per 
asset: 

 [ 

    { 

        "assetKey": "asset01", 

        "devices": [ 

            { 

                "deviceId": "0-1-160-7-0-1", 

                "deviceType": "HVAC", 

                "flexibilityList": [ 

                    { 

                        "setpoint": 22, 

                        "interval": 1, 

                        "comfort": 0.85, 

                        "flexAmount": 0.120 

                    }, 

                    { 

                        "setpoint": 22, 

                        "interval": 2, 
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                        "comfort": 0.83, 

                        "flexAmount": 0.120 

                    }, 

                    { 

                        "setpoint": 22, 

                        "interval": 3, 

                        "comfort": 0.84, 

                        "flexAmount": 0.120 

                    }, 

                    { 

                        "setpoint": 22, 

                        "interval": 4, 

                        "comfort": 0.82, 

                        "flexAmount": 0.120 

                    }, 

                    ….. 

                ] 

            }, 

            { 

                "deviceId": "0-1-163-7-0-1", 

                "deviceType": "LIGHT", 

                "flexibilityList": [ 

                    { 

                        "setpoint": 0.85, 

                        "interval": 1, 

                        "comfort": 0.92, 

                        "flexAmount": 0.001 

                    }, 

                    { 

                        "setpoint": 0.85, 

                        "interval": 2, 

                        "comfort": 0.92, 

                        "flexAmount": 0.001 

                    }, 

                    { 

                        "setpoint": 0.85, 

                        "interval": 3, 

                        "comfort": 0.92, 

                        "flexAmount": 0.001 

                    }, 

                    { 

                        "setpoint": 0.85, 

                        "interval": 4, 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 56 

 

                        "comfort": 0.92, 

                        "flexAmount": 0.001 

                    }, 

                    …. 

                ] 

            } 

        ] 

    } 

] 

In addition to the definition of the DER Flexibility Engine that calculates the potential controllability of the 
different device types, we provide an interface for calculating the maximum potential flexibility available 
towards the definition of asset participation at portfolio-level. This considers the different business scenarios 
examined in the project – for example, ranking buildings at portfolio-level that will participate in an explicit 
DR strategy in response to a DSO’s request. 

The role of this is to provide an aggregated list of flexibilities for each building, reflecting in that way the 
maximum available demand flexibility. The main differentiation of this process is that a single demand 
flexibility potential value is selected as an outcome; this being the aggregated maximum demand flexibility 
per interval for the building. The algorithmic process for this process is presented: 

% DER Flexibility Modeling Engine 

Total_Flex_Amount=0; 

 for i=1:Devices 

  Max_Flex_Amount(i)=0; 

  for j=1:Setpoint 

   Actual_Consumption(j)=DER_Model(Device(i), Setpoint, timeperiod); 

   Context=DER_Model(Device(i), Setpoint, timeperiod); 

   Comfort(j)=Building_Comfort(Device(i),Context); 

   if Comfort(j)> Comfort_Level 

     Baseline_Consumption(j)=DER_Model(Device(i), Current_Setpoint, timeperiod); 

     Flex_Amount(j)=Baseline_Consumption(j)-Actual_Consumption(j); 

     if Flex_Amount(j)> Max_Flex_Amount(i) 

        Max_Flex_Amount(i)=Flex_Amount(j); 

       Flex_Point(i,j)=(Device(i),Setpoint(j)); 

      end 

   end 

   end 

Total_Flex_Amount=Total_Flex_Amount+Max_Flex_Amount(i);   

end 
with the following input parameters: 

- Timeperiod: The requested time period for short term forecasting. (Default value: 15 minutes) 

- Comfort_Level Indicator: A boundary at comfort level expressed in terms of utility function as presented 

in section 6.2.7. (Default value: 0.7) 
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Therefore, we are incorporating in the analytics process the specific business objectives as defined by the 
Building Dynamic Assessment Engine. Therefore, we are specifying the interfacing process with the 
respective system component. 

Interfaces specification  

This is the dynamic layer of the engine, supporting multiple ad-hoc requests. 

Request Message Type defined by the parameters as specified above {Time period, Comfort Level Indicator} 
and 

{ 

  "assetIds": [ "asset01",”asset02”,…],         // id of the asset or zone 

  "comfortLevel": 0.7,              // comfort-level 

  "timeperiod":  60                   //time ahead of the forecast 

} 

Response Message Type: expressed as a JSON message reporting the maximum potential of demand 
flexibility for the specific case scenario. 
 

{ 

  "assetIdList": [ 

    { 

      "assetId": "asset01", 

      "flexPotentialList": [ 

        { 

          "flexibility": 0.256, 

          "interval": 1 

        }, 

        { 

          "flexibility": 0.131, 

          "interval": 2 

        },  

        { 

          "flexibility": 0.131, 

          "interval": 3 

        },  

        { 

          "flexibility": 0.131, 

          "interval": 4 

        } 

 

      ] 

    }, …… 

 

 

We presented above the design specifications and interfaces definition for the Context Aware Flexibility 
Profiling engine. 
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A short overview of the algorithmic process is provided. A main prerequisite for the estimation of 
Flex_Amount is the extraction of accurate DER_Model & Building_Comfort models that will set the functions 
for the calculation of comfort and energy consumption levels under different DER simulation conditions (Set-
points). For each controllable device type and potential setpoint derived from the allowed setpoint range of 
each device, we estimate the actual and baseline consumption and by further taking into account the impact 
on contextual conditions (and subsequently the comfort levels), we estimate the amount of demand flexibil-
ity.  

The calculation of the potential amount of demand flexibility is calculated in WiseCORP platform (building 
level), taking into account the different business simulation scenarios (i.e. device-specific flexibility and max-
imum available flexibility potential per building). The WiseCORP DR platform is serving the implementation 
of DR strategies by taking into account real-time estimation of demand flexibility (and thus this service is 
activated when triggered a DR strategy). In the same time, WiseCORP periodically updates the values of po-
tential amount of demand flexibility that each consumer of the portfolio may offer to the Aggregator. 

6.2.9 Technical description of application 

Following the component functional analysis in the previous section, the development view of the respective 
software component considering components’ technical requirements and dependencies, as well as 
programming languages/technologies that have been used for the development of the associated 
component is discussed next.  

At the application layer, the development of the core application is in Java 8, considering the usage of Spring 
MVC framework for decoupling the different layers that consist of the application functionalities. As 
presented above in the components analysis, the development approach ensures the modularity of the 
application, and further modification of any part of the application without affecting the development 
process (e.g. the business layer of the application is decoupled from the core analytics part towards the 
extraction of flexibility profiles). 

The minimum hardware requirements for the deployment of the application are an 8-core XEON (or 
equivalent) CPU, 32GB of RAM, 20TB hard disk and a 64-bit Linux OS. The final deployment of the application 
(either as a cloud application or hosted in pilot premises) will be defined in WP14 along with the overall 
deployment of the solution at the different pilot sites, taking into account the scale of the demonstration of 
the profiling engine. 

The detailed design and development view of context based flexibility profiling engine was presented. This is 
one of the main innovations of the WiseGRID framework towards the implementation of a Demand Response 
optimization framework that incorporates occupants’ behavioural preferences in the decision-making pro-
cess. Though the development of the context-based flexibility profiling engine is an anchor point of WiseGRID 
framework, it requires the installation of sensors and controllers in premises. Therefore, in lack of low level 
information high-level demand elasticity profiles are defined and further integrated in the holistic demand 
flexibility framework of the project. The high-level demand elasticity component analysis is presented in the 
following section. 
 

6.3 PRICE-BASED DEMAND ELASTICITY MODEL (AUEB) 

6.3.1 Brief description 

This section introduces a framework for the implementation of implicit (price-based) DR campaigns. The main 
part of this work focuses on the profiling of the electricity consumers, i.e., the formulation of their demand 
with respect to the price and the environmental temperature. More particularly, two cases are considered. 
The former corresponds to the “Constant Elasticity of Substitution” (CES) model below and assumes that the 
demand shifts within different periods in a day, in response to different prices (announced by the retailer) 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 59 

 

and temperatures in those periods. As no inter-period demand shifts are observed by all users, a simpler 
model is also considered (termed “Simple”), where the consumption during each period depends only on the 
price and the temperature of this particular period.  

In constructing customer profiles based on historical data, the above models are fitted to the data using least-
squares linear regression. For the model allowing inter-period demand shifts, two different approaches are 
employed for data fitting, each giving rise to a different prediction method (the “Normalized” and “Enriched”) 
below. To assess the accuracy of the models, a publicly available energy consumption dataset derived from 
a dynamic-pricing program at the city of London [16] is used and cross performance evaluation is performed. 
The findings suggest that by classifying customers into those whose consumption patterns exhibit inter-
periods demand shifts and those who do not, and subsequently using the CES model for customers in the 
first category, and the “Simple” model for customers in the second, improves the accuracy of the models’ 
predictions. Finally, an algorithm is introduced which takes as input the aforementioned prediction methods 
and computes the dynamic price to be applied such that the collective reaction of the customers results to a 
desired level of load curtailment. 

The prediction models may be utilized by a retailer for the accurate prediction of his clientele’s demand such 
that to purchase the adequate energy in the wholesale market and achieve a balanced portfolio. Even in the 
case of a portfolio imbalance, the retailer may use the proposed algorithm and apply the suggested dynamic 
price, avoiding in this way to purchase further energy in the particularly expensive intra-day market.  

6.3.2 Utility and demand functions 
This section presents the approach for the users’ profiling, based on the Constant Elasticity of Substitution 
model which is commonly employed in energy sector for the prediction of the user’s consumption [17], [18], 
[19].  The model assumes that the elasticity of substitution between pricing periods is constant, even if the 
actual level of the load varies. Before proceeding it is clarified that the coefficients of the function are user-
specific, but in what follows the user indicator is omitted for simplicity reasons. 

The Constant Elasticity of Substitution utility function of a consumer on day 𝑡 with 𝐽 dynamic pricing periods, 
is as follows 

 

𝑢𝑡 = ( 𝑎
𝑗,𝑡

1

𝜀𝑠𝑢𝑏

𝐽

𝑗=1

𝑄
𝑗,𝑡

𝜀𝑠𝑢𝑏−1

𝜀𝑠𝑢𝑏 )

𝜀𝑠𝑢𝑏

𝜀𝑠𝑢𝑏−1

 (14) 

Where 𝜀𝑠𝑢𝑏, is the elasticity of substitution, 𝑄𝑗,𝑡 is the electricity consumed during period 𝑗 on day 𝑡 and 𝑎𝑗,𝑡 

is the parameter capturing the impact of the environmental temperature on the user’s demand. Using 
standard manipulation, the Marshallian demand function for electricity consumption in period 𝑗 on day 𝑡 is 
given by:  

 
𝑄𝑗,𝑡 = 

𝑚𝑗𝑎𝑗,𝑡𝑃𝑗,𝑡
−𝜀𝑠𝑢𝑏

𝑃𝑡
1−𝜀𝑠𝑢𝑏

 (15) 

Where 𝑚𝑡 =  𝑄𝑗,𝑡𝑃𝑗,𝑡
𝐽
𝑗=1  is the budget, i.e., the total expenditure for the consumption of electricity on day 𝑡, 

and 𝑃𝑗𝑡 is the price of electricity in period 𝑗 and day 𝑡, while  

 

𝑃𝑡 = ( 𝑎𝑗,𝑡𝑃𝑗,𝑡
1−𝜀𝑠𝑢𝑏

𝐽

𝑗=1

)

1

1−𝜀𝑠𝑢𝑏

 

 

(16) 

 

is a consumer price index for day 𝑡. 
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So far, if the values of the parameters  𝑎𝑗,𝑡, 𝜀
𝑠𝑢𝑏 and , 𝑚𝑡 were known, the electricity consumption in period 

𝑗 and day 𝑡 could be computed from Equation (15),  given the price vector applied during all the periods of 
the day. In the sequel, algebraic transformations and least-squares linear regression are used for the 
estimation of their values. Before proceeding, it is clarified that the investigated model considers only two 
periods of consumption within the same day, namely the “peak” and the “off-peak” and notated as “p” and 
“op” respectively. 
Taking logarithms in Equation (15) and subtracting 𝑙𝑛𝑄𝑜𝑝,𝑡 from 𝑙𝑛𝑄𝑝,𝑡 results to: 

 𝑙𝑛  
𝑄𝑝,𝑡

𝑄𝑜𝑝,𝑡
 = 𝑙𝑛𝑎𝑝,𝑡 − 𝑙𝑛𝑎𝑜𝑝,𝑡 + 𝜀𝑠𝑢𝑏𝑙𝑛  

𝑃𝑜𝑝,𝑡

𝑃𝑝,𝑡
  (17) 

Now assume that the parameter  𝑎𝑗,𝑡 changes in period 𝑗 ∈ {𝑝, 𝑜𝑝} and day 𝑡 according to the formula,  

 

 𝑎𝑗,𝑡 =  𝑎𝑗,𝑡 𝑒𝛽𝑇𝑗,𝑡𝑒𝛿𝑗,𝑡 (18) 

meaning that it is a function of the environmental temperature (𝑇𝑗,𝑡) and the coefficient 𝑎𝑗,𝑡  during the 

specific period 𝑗 and day 𝑡 and a random term 𝛿𝑗,𝑡. Then, letting 𝜋𝑝,𝑜𝑝,𝑡 = 𝑙𝑛𝑎𝑝,𝑡 − 𝑙𝑛𝑎𝑜𝑝,𝑡̃ and 𝜇𝑝,𝑜𝑝,𝑡 =

𝛿𝑝,𝑡 − 𝛿𝑜𝑝,𝑡 we get the estimating equation:  

 𝑙𝑛  
𝑄𝑝,𝑡

𝑄𝑜𝑝,𝑡
 = 𝜋𝑝,𝑜𝑝,𝑡 + 𝜀𝑠𝑢𝑏𝑙𝑛  

𝑃𝑜𝑝,𝑡

𝑃𝑝,𝑡
 + 𝛽(𝑇𝑝,𝑡 − 𝑇𝑜𝑝,𝑡) + 𝜇𝑝,𝑜𝑝,𝑡 ⟹ 

 
 𝑙𝑛  

𝑄𝑝,𝑡
𝑄𝑜𝑝,𝑡

 = 𝜇𝜋𝑝,𝑜𝑝,𝑡 + 𝜀𝑠𝑢𝑏𝑙𝑛  
𝑃𝑜𝑝,𝑡
𝑃𝑝,𝑡

 + 𝛽(𝑇𝑝,𝑡 − 𝑇𝑜𝑝,𝑡) (19) 

Where, 

 𝜇𝜋𝑝,𝑜𝑝,𝑡 = 𝜋𝑝,𝑜𝑝,𝑡 + 𝜇𝑝,𝑜𝑝,𝑡 = 𝑙𝑛𝑎𝑝,𝑡 − 𝑙𝑛𝑎𝑜𝑝,𝑡̃ + 𝛿𝑝,𝑡 − 𝛿𝑜𝑝,𝑡 (20) 

At this point everything is set to deal with equation (15) using simple algebra. Assuming that 𝑚𝑡 is known 
(Equation (29) presents the approach for its estimation), the only unknown variable is 𝑎𝑗,𝑡. The combination 

of Equations (15), (16) and (18) results to the following equation:   

 
𝑄𝑗,𝑡 = 

𝑚𝑡𝑎𝑗,𝑡 𝑒𝛽𝑇𝑗,𝑡𝑒𝛿𝑗,𝑡𝑃𝑗,𝑡
−𝜀𝑠𝑢𝑏

( 𝑎𝑗,𝑡 𝑒𝛽𝑇𝑗,𝑡𝑒𝛿𝑗,𝑡𝑃𝑗,𝑡
1−𝜀𝑠𝑢𝑏𝐽

𝑗=1 )
, 𝑗𝜖{𝑝, 𝑜𝑝} 

 

(21) 

Setting 𝑎𝑜𝑝,𝑡̃ = 1 and 𝛿𝑜𝑝,𝑡 = 0 in Equation (20), results to:   

 𝑎𝑝,𝑡 𝑒𝛿𝑝,𝑡 = 𝑒𝜇𝜋𝑝,𝑜𝑝,𝑡  (22) 

Replacing (22) in (21) for two periods of interest concludes to:    

 
𝑄𝑜𝑝,𝑡 = 

𝑚𝑡𝑒
𝛽𝑇𝑜𝑝,𝑡𝑃𝑜𝑝,𝑡

−𝜀𝑠𝑢𝑏

(𝑒𝛽𝑇𝑜𝑝,𝑡𝑃𝑜𝑝,𝑡
1−𝜀𝑠𝑢𝑏 + 𝑒𝜇𝜋𝑝,𝑜𝑝,𝑡  𝑒𝛽𝑇𝑝,𝑡𝑃𝑝,𝑡

1−𝜀𝑠𝑢𝑏)
 

 

(23) 

And  

 
𝑄𝑝,𝑡 = 

𝑚𝑡𝑒
𝜇𝜋𝑝,𝑜𝑝,𝑡  𝑒𝛽𝑇𝑝,𝑡𝑃𝑝,𝑡

−𝜀𝑠𝑢𝑏

(𝑒𝛽𝑇𝑜𝑝,𝑡𝑃𝑜𝑝,𝑡
1−𝜀𝑠𝑢𝑏 + 𝑒𝜇𝜋𝑝,𝑜𝑝,𝑡𝑒𝛽𝑇𝑝,𝑡𝑃𝑝,𝑡

1−𝜀𝑠𝑢𝑏)
 (24) 
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Finally, Equation (25) formulates the demand function of period 𝑗 at day 𝑡, assuming that it depends only on 
the price and the environmental temperature during this specific period.  

 𝑙𝑛𝑄𝑗,𝑡 = 𝜂𝑗 + 𝜀𝑗𝑙𝑛𝑃𝑗,𝑡 + 𝜉𝑗𝑇𝑗,𝑡 , 𝑗 ∈ {𝑝, 𝑜𝑝} (25) 

In this case, 𝜂𝑗 is a constant number, 𝜀𝑗  is the user’s price elasticity, i.e., the coefficient which captures the 

impact of the price on the user’s demand and 𝜉𝑗  is the user’s weather sensitivity, i.e., the parameter that 

captures the impact of the environmental temperature on the user’s demand. 

 

6.3.3 Dataset 

The evaluation of accuracy of the proposed models, is based on a dataset available online [16], which was 
derived by a dynamic-pricing (Time of Use) program applied to a large number (~1100, 163 of which were 
employed for the experimental setup) of households in London, during the 2013 calendar year. This set 
includes half-hourly data for the total consumption of each household, meaning that no sub-metering of each 
individual device is available. Concerning the dynamic price announced to the consumers, it varies in the 
set{0.0399, 0.672} 𝑝𝑜𝑢𝑛𝑑𝑠/𝐾𝑊ℎ, while the consumers were exposed for most of the time to its base value 
which equals 0.1176 pounds/KWh. It should be mentioned beforehand that the dataset includes only a 
limited number of Time-of-Use events, meaning that the base value of the price has a dominant presence 
and it rarely changes to its dynamic value. This fact assigns a further difficulty to the performance of the 
prediction models, apart from the fact that they consider only the price and the temperature as the 
parameters affecting the demand and exclude other factors such as the income, the members of the 
household, etc. (which are not available).   

Recall that the followed approach in this section considers only two periods of consumption (namely the 
peak and off-peak). To this end, targeting to convert the dataset into a compatible form for the study, a pre-
elaboration of the dataset was carried out (before the prediction models were applied at it). More 
specifically, the average value of the applied price, the average environmental temperature (outside the 
household premises) and the aggregate consumption of each household were computed, during the time 
intervals [17:00-23:00] and [23:00-17:00] for the peak and off-peak periods respectively. For clarity reasons, 
it is mentioned that the two former parameters are equal for all households (for each specific period and 
day), while the consumption differs for each end-point according to its residents’ reaction to them.  

Based on the derived data, in what follows the major difference of the proposed models is presented, 
compared with the one introduced in [17], which consists to the considered impact of the outside 
temperature on each household’s demand. More specifically, the approach followed in this section has 
formulated (for all the models) the demand as a function of the outside temperature, while the work in [17] 
assumes that the demand is affected by the absolute difference between the outside temperature and the 
one that the residents perceive as comfort-level within their premises. This latter relation is precise if the 
HVAC devices are used both for cooling and heating, meaning that they consume more electricity as the 
outside temperature tends towards its extreme values during the summer and the winter respectively. 
Actually, this formulation of demand for such type of devices is also proposed in a fundamental research 
work in the energy sector which investigates optimal implementation of implicit DR campaigns [20].   

This variation is justified by multiple reasons which are explained next. Firstly, as already mentioned the 
available dataset does not provide consumption records separately for each device (for the HVAC in 
particular), and consequently the estimation of the comfort level is practically infeasible. Additionally, the 
households in London rely mostly on gas for covering their heating needs, while the use of HVAC is generally 
limited since the temperature during the summer rarely exceeds the humanly tolerable levels. Despite this 
fact, the temperature is still expected to have an impact on the users’ consumption since it affects their 
lifestyle patterns, e.g., during the summer the citizens tend to spend more time outside of their houses, the 
needs for lightening is decreasing etc. Figure 18, juxtaposes the aggregate consumption (of all the users) with 
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the environmental temperature, for both periods and for all days of the year. Before proceeding, it is clarified 
that the off-peak consumption appears greater than the peak one, since it reflects the sum of consumption 
during all the 18 hours of the period (in hourly average terms, it would be clearly lower). Figure 18 reveals 
the seasonality of the consumption, having a decreasing tendency with respect to the temperature, a fact 
indicating that the aforementioned approach for the formulation of the demand function is appropriate for 
this dataset. It is emphasized that the proposed models may be easily adjusted, targeting to capture the 
impact of temperature as considered in the related work (described above), if applied at sites where the 
HVAC equipment is used for covering both the cooling and heating needs.  

 

  

Figure 18 – The aggregate consumption (left) and the environmental temperature (right) during the peak and off-
peak period for all the days of the year [16]. 

 

6.3.4 Regression and model definition 

Figure 18 is very illustrative for justifying also the approach for the subset of data given as input to the 
regression process, targeting to provide the consumption profile of each user, i.e., for estimating the user-
specific coefficients of the demand function for all the three models. More specifically, for each day of the 
year that a prediction of consumption is derived (see in the next section for a concrete definition of this 
subset), the “training period” of the regression process is considered as the last thirty days before the one 
with prediction interest. For instance, for the estimation of the consumption at the 31st day of January, the 
data-subset consisting by the records in the interval between the 1st and the 30th day of January (including 
the edges) was provided as input to the models. The next training period is from 2nd of January to 31st of 
January for a prediction on the 1st of February and so on. As Figure 18 depicts, this choice is justified by the 
fact that the fluctuations of both the temperature and the consumption are narrow within each of these 
intervals and consequently it is reasonably anticipated that the training data closely reflects the consumption 
under prediction. From the above description, it becomes apparent that the coefficients are not just “user” 
but also day-specific since the training period of the models is constantly sliding. For clarity reasons it is 
mentioned that the evaluation process of the proposed models does not include the first 30 days of the year 
(since they are necessary as the first training period), the days from 200-270 since they do not include enough 
dynamic pricing events and the days 270-300 (since they are necessary for the predictions of day 301). 

In what follows, the three prediction models are presented, based on the assumption of whether there is 
load substitution between the two periods of the same day or not.  

1) No substitution between periods: 

This case assumes that the consumption of the user during period 𝑗 depends only on the price and 
environmental temperature during this period. Consequently, the least-squares linear regression is applied 
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on equation (25), for estimating the parameters 𝜂𝑗 𝜀𝑗 and 𝜉𝑗, resulting to the “Simple” prediction model.  

 𝑄𝑗,𝑡
𝑝𝑟𝑒𝑑

= 𝑒𝜂𝑗+𝜀𝑗𝑙𝑛𝑃𝑗,𝑡+𝜉𝑖𝑇𝑗,𝑡 , 𝑗𝜖{𝑝, 𝑜𝑝} (26) 

2) Substitution between periods: 

This case assumes that the consumption of the user during the period 𝑗 depends on the prices and the 
environmental temperatures of both periods within the day. Thus, the least-squares linear regression is 
applied on equation (19) for estimating the coefficients 𝜇𝜋𝑝,𝑜𝑝,𝑡 , 𝜀𝑠𝑢𝑏

  and 𝛽:  

The problem with equation (19) is the fact that it provides the ratio of the consumptions during the two 
periods, but not their values. Targeting to deal with this problem, two approaches are followed which lead 
to the corresponding prediction models:  

The Normalized model estimates the consumption of each period as a function with respect to the 
consumption on the other. More particularly: 

 
𝑄𝑝,𝑡
𝑝𝑟𝑒𝑑

= 𝑄𝑜𝑝,𝑡𝑒
𝜇𝜋𝑝,𝑜𝑝,𝑡+𝜀𝑠𝑢𝑏

 𝑙𝑛(
𝑃𝑜𝑝,𝑡
𝑃𝑝,𝑡

)+𝛽(𝑇𝑝,,𝑡−𝑇𝑜𝑝,𝑡)
 (27) 

And  

 
𝑄𝑜𝑝,𝑡
𝑝𝑟𝑒𝑑

=
𝑄𝑝,𝑡
𝑝𝑟𝑒𝑑

𝑒
𝜇𝜋𝑝,𝑜𝑝,𝑡+𝜀𝑠𝑢𝑏

 𝑙𝑛(
𝑃𝑜𝑝,𝑡
𝑃𝑝,𝑡

)+𝛽(𝑇𝑝,𝑡−𝑇𝑜𝑝,𝑡)
 (28) 

Notice that in the former equation which estimates the peak-consumption, the off-peak consumption  𝑄𝑜𝑝,𝑡 

is known (since this period proceeds), thus the actual value from the dataset is used. In the latter case, 𝑄𝑝,𝑡
𝑝𝑟𝑒𝑑

 

is derived from the “Simple” model.  

The Enriched model applies the estimated coefficient 𝜇𝜋𝑝,𝑜𝑝,𝑡, 𝜀𝑠𝑢𝑏
  and 𝛽 to the equations (23) and (24) for 

its predictions. The only unknown parameter in these equations is the budget 𝑚𝑡
 . In what follows, an 

analytical description of the approach for its estimation is presented.  

Let 𝑇𝑅 = {𝑡 − 30, 𝑡 − 29,… , 𝑡 − 1} be the set of days consisting the training period, provided as input to the 
model for predicting the consumption at day 𝑡. Then 𝑈𝑇𝑅 = {𝑠 ∈ 𝑇𝑟|𝑃𝑝,𝑠 ≠ 𝑃𝑜𝑝,𝑠} is the set of days when 

the prices of the two periods are not equal, i.e., the days when the load substitution may occur. The budget 
is estimated as the average budget spent by the user during these days. In mathematical terms:  

 
𝑚𝑡

𝑝𝑟𝑒𝑑
=

1

|𝑈𝑇𝑅|
 𝑃𝑜𝑝,𝑡

 𝑄𝑜𝑝,𝑡
 

𝑡∈𝑈𝑇𝑅

+ 𝑃𝑝,𝑡
 𝑄𝑝,𝑡

  (29) 

   

For clarity reasons, it is mentioned that the “Simple” model may be applied during any day, independently if 
there is a difference between the prices announced at the two periods, while the other two models are 
applied only during the days when the aforementioned difference is realized, i.e., during these days when 
consumption shifting between the two periods is expected to occur. 

6.3.5 Accuracy of the proposed models 

This section evaluates the proposed models with respect to their accuracy for the prediction of the individual 
(for each user) and the aggregate (of all users) consumption. The evaluation process mainly focuses on the 
days when the price during the peak period is higher compared to the one applied during the off-peak, i.e., 
at these days when the load shifting is expected to occur (the effect that both the Enriched and the 
Normalized models are designed to capture). For the opposite case, i.e., when the off-peak price is higher 
compared to the peak-one, the findings are similar (in terms of the models’ performance ranking) and 
consequently their presentation is omitted for simplicity reasons. Before proceeding, it is clarified that 
throughout this section the models are not user-specific, meaning that all the users are characterized by the 
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same demand function and are differentiated by means of its coefficients. This process results to useful 
conclusions for the performance of each model (separately), which guide the design of hybrid models in the 
next section.  

6.3.5.1 Cross performance evaluation 

The basic evaluation metrics to be utilized are the “Mean Absolute Percentage Error” (MAPE) and the 
“Absolute Percentage Error” (APE) for the individual and the aggregate consumption respectively. In what 
follows, their concrete definition is provided.  

Let 𝐷 = {31,32,…200, 300, 301,… , 365} be the set of days that the models provide prediction results, then 
𝐻𝑝 = {𝑡𝜖𝐷|𝑃𝑝,𝑡

 > 𝑃𝑜𝑝,𝑡
 } is the set which includes the days with evaluation interest. The mathematic 

formulation of the MAPE for the prediction of individual consumption of each user 𝑖 during period 𝑗 is as 
follows, where |𝐻𝑝| stands for the cardinality of the set 𝐻𝑝. 

 
𝑀𝐴𝑃𝐸

𝑖,𝑗

𝐻𝑝 =
1

|𝐻𝑝|
 

|𝑄𝑖,𝑗,𝑡
 − 𝑄𝑖,𝑗,𝑡

𝑝𝑟𝑒𝑑
|

𝑄𝑖,𝑗,𝑡
 

𝑡𝜖𝐻𝑝

, 𝑗 ∈ {𝑝, 𝑜𝑝} (30) 

Let 𝑄𝑗,𝑡
 =  𝑄𝑖,𝑗,𝑡

 𝑀
𝑖=1  be the aggregate consumption of all users during period 𝑗 at day t, where M stands for 

the total number of end-users (163 in this experimental setup). Then, the mathematical formulation of the 
APE for the prediction of the aggregate consumption during period 𝑗 for each day 𝑡𝜖𝐻𝑝 reads as follows:   

 
𝐴𝑃𝐸

𝑗,𝑡

𝐻𝑝 =
|𝑄𝑗,𝑡

 − 𝑄𝑗,𝑡
𝑝𝑟𝑒𝑑

|

𝑄𝑗,𝑡
  , ∀ 𝑡𝜖𝐻𝑝, 𝑗 ∈ {𝑝, 𝑜𝑝} (31) 

Figure 19 (left), depicts the 𝑀𝐴𝑃𝐸
𝑖,𝑜𝑝

𝐻𝑝  of all the user for all the proposed prediction models, plus for an 

additional theoretical artifact (named “Enriched - Actual Budget” and “Enriched-AB” its abbreviation), which 
differs with the Enriched by the fact that the budget 𝑚𝑡 corresponds to the actual value of this parameter. 
More specifically for the Enriched model the value of this parameter is estimated by Equation (29) using 
historical data, while for the Enriched-AB the value is calculated as 𝑚𝑡 =  𝑄𝑗,𝑡𝑃𝑗,𝑡𝑗 , 𝑗 ∈ {𝑝, 𝑜𝑝}, for each day 

𝑡 ∈ 𝐻𝑝. The reason for this additional model is to demonstrate the crucial impact of the budget on the 

performance of the model and highlight the accurate estimation of this parameter as one of the major 
directions of our future work.  

Concerning their comparison, the Simple model has the best performance among all, since its MAPE in 

average terms ( 
1

𝑀
 𝑀𝐴𝑃𝐸

𝑖,𝑜𝑝

𝐻𝑝
𝑖 ) equals 27.48%. The Enriched and the Normalized models appear with almost 

the same performance with 39.26% and 37.28% respectively. As expected, the Enriched-AB model with 
30.64% has a much better behaviour than the two former, but interestingly it is also worse than the Simple 

one. More specifically (see Figure 19 - right), the Simple model achieves for the 25% of the users a 𝑀𝐴𝑃𝐸
𝑖,𝑜𝑝

𝐻𝑝  

lower than 17.7% and for half of them lower than 22.8%.  The performance of the other three models in the 
aforementioned sequence, is 24.6% and 34%, 24.1% and 33.8%, 21.33% and 27.77% respectively.  



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 65 

 

  

Figure 19 – MAPE of all the users’ individual off-peak consumption for all the proposed models (left) and the 
relative boxplots (right). 

In what follows it is investigated if the models that are designed to capture the users’ load-shifting, perform 
better for those users who actually shift their consumption. The users who shift, are reasonably defined as 
those who appear with the following attribute: Their average off-peak consumption at the days that the 
peak-price is higher than the off-peak one, must be higher compared to their average off-peak consumption 
at the days when the prices are equal for both periods. Formally, let 𝐸 = {𝑡𝜖𝐷|𝑃𝑝,𝑡

 = 𝑃𝑜𝑝,𝑡
 }, then the set 𝐾 

includes the users who shift. 

 𝐾 = {𝑖𝜖𝑀| 
1

|𝐻𝑝|
 𝑄𝑖,𝑜𝑝,𝑡

 
𝑡∈𝐻𝑝 >

1

|𝐸|
 𝑄𝑖,𝑜𝑝,𝑡

 
𝑡∈𝐸 } (32) 

According to the measurements, |𝐾| = 109, meaning that 109 users out of 163 in total shift their load. The 
Enriched model provides more accurate results (in terms of MAPE) for only 2 users, both of whom belong in 
𝐾. The Normalized model is more accurate for 22 users, 15 of whom actually shift their load. The Enriched-
AB achieves closer predictions for 44 users, 29 of whom shift their load. Finally, the Simple model has more 
accurate predictions for 119 users, 80 of whom belong in 𝐾. Interestingly, the set composed by the 15 users 
whose consumption is predicted better by the Normalized model, is a pure subset of the set including the 29 
users of the Enriched-AB model. This result, indicates a robust behaviour of the mechanisms designed to 
capture the load shifting, and is very promising for their performance when applied on a more appropriate 
dataset (with adequate dynamic pricing events), as the one that will be derived by the WiseGRID pilot sites.    

Targeting to provide a more detailed analysis, in what follows the level of load shifting is correlated with the 
accuracy of each model.  The metric to be used is the “Mean Percentage Load Shifting” (MPLS), defined as 
follows: 

 

𝑀𝑃𝐿𝑆𝑖,𝑜𝑝 =

1
|𝐻𝑝|

 𝑄𝑖,𝑜𝑝,𝑡
 

𝑡𝜖𝐻𝑝 −
1
|𝐸|

 𝑄𝑖,𝑜𝑝,𝑡
 

𝑡𝜖𝐸

1
|𝐸|

 𝑄𝑖,𝑜𝑝,𝑡
 

𝑡𝜖𝐸

 (33) 

Notice that positive values of this metric, mean that the corresponding user actually shifts his load and vice 
versa. Figure 20 (left) presents the MPLS of the users who shift (𝑀𝑃𝐿𝑆𝑖,𝑜𝑝 > 0 . The first boxplot contains all 

such users while the other two only those users whose MAPE is predicted more accurately by each respective 

model than from the Simple one ( 𝑀𝐴𝑃𝐸𝑖,𝑜𝑝
𝑥 < 𝑀𝐴𝑃𝐸𝑖,𝑜𝑝

𝑆𝑖𝑚𝑝𝑙𝑒
). Notice that the Enriched-AB model has the 

tendency to provide more accurate predictions for those users whose load shifting is more intense, while the 
Normalized for those who appear with an average shifting behaviour. Figure 20 (right) presents the MPLS of 
the users who do not shift (𝑀𝑃𝐿𝑆𝑖,𝑜𝑝 < 0 , with the corresponding boxplots containing the MAPE of users 

as described above. In this case it is more apparent that the two models provide more accurate predictions 
for those users whose average consumption over the days 𝑡 ∈ 𝐻𝑝 is almost equal as the respective magnitude 
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over the days 𝑡 ∈ 𝐸,  since they appear with smaller values of MPLS (even negative). These findings guide the 
design of hybrid prediction models (see section 6.3.6),  where each individual user is associated with the 
appropriate demand function according to his shifting behaviour, targeting to achieve better consumption 
predictions both at individual and aggregate level. 

 

  

Figure 20 – Boxplots of the MPLS for those users who shift their load (left) and for those who don’t (right). 

 

In what follows, the performance evaluation of the proposed models is presented, in terms of their accuracy 

for the prediction of the aggregate consumption. Figure 21 depicts the 𝐴𝑃𝐸𝑜𝑝,𝑡
𝐻𝑝  of the aggregate consumption 

for all the four models, and for all the days of evaluation interest: 𝑡𝜖𝐻𝑝. Here also, the Simple model 

outperforms all the others in average terms, since it appears with the lowest average value 

(
1

|𝐻𝑝|
 𝐴𝑃𝐸𝑜𝑝,𝑡

𝐻𝑝
𝑡∈𝐻𝑝 ) which equals 4.45%. For the Enriched, the Normalized and Enriched-AB models this value 

equals 15.13%, 9.03% and 5.12% respectively. More specifically (see Figure 21 - right), the Simple model 

achieves for 25% of the days an 𝐴𝑃𝐸𝑜𝑝,𝑡
𝐻𝑝  lower than 1.4% and for 50% of them lower than 3.3%, while the 

corresponding values for the other three models in the aforementioned sequence are 2.8% and 10.9%, 4.2% 
and 7.4%, 1.7% and 3.5% respectively. 

 

  

Figure 21 – APE of the users’ aggregate off-peak consumption for all the proposed models (left) and the relative 
boxplots (right). 

Despite its domination in average terms, the Simple model is outperformed for some particular days by the 
others. This observation is explained by the fact that the prediction of the aggregate consumption integrates 
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the inaccuracy of all the individual predictions and consequently their over/under-estimation errors are 

averaged out. In what follows, a proof of this thesis is provided. Let the set 𝐵𝑥 = {𝑡 ∈ 𝐻𝑝|𝐴𝑃𝐸𝑡
𝑥 <

𝐴𝑃𝐸𝑡
𝑆𝑖𝑚𝑝𝑙𝑒

} include the days that the model 𝑥𝜖{𝐸𝑛𝑟𝑖𝑐ℎ𝑒𝑑,𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝐸𝑛𝑟𝑖𝑐ℎ𝑒𝑑 − 𝐴𝐵} outperforms the 

Simple one and the DMAPE𝑜𝑝,𝑡 = 
1

𝑀
 

|𝑄𝑖,𝑜𝑝,𝑡
 −𝑄𝑖,𝑜𝑝,𝑡

𝑝𝑟𝑒𝑑
|

𝑄𝑖,𝑜𝑝,𝑡
 𝑖  standing for the Daily MAPE, i.e., the Mean Absolute 

Percentage Error over all the individual consumptions at the specific day 𝑡. 

Figure 22 (left) presents the ratio of the DMAPE of all the three models over the respective magnitude for 

the Simple one (
𝐷𝑀𝐴𝑃𝐸𝑜𝑝,𝑡

𝑥

𝐷𝑀𝐴𝑃𝐸𝑜𝑝,𝑡
𝑆𝑖𝑚𝑝𝑙𝑒,) for all the days 𝑡𝜖𝐵𝑥  (𝑡𝜖𝐵′𝑥 on the right). Notice that for the Enriched and the 

Normalized model, the ratio is always higher than the unit (apart from once), meaning that (despite 
outperforming) these models provide less accurate estimates of the individual consumptions. Even though 
less intense, this result appears also in some cases for the Enriched-AB model, but its overall behaviour 
indicates more accurate predictions than the two former. On the contrary (see on the right-hand side of 
Figure 22), when the Simple model outperforms, the ratio is higher than the unit with only a few exceptions 
occurring at the days when the performance (w.r.t. the APE) of the two respective models is relatively close. 
Still, even in this case the ratio remains very close to the unit. These findings indicate that in their current 
from (and for this dataset) the Simple model appears with a much more robust behaviour, providing better 
predictions both for the individual and the aggregate consumption.  

 

  

Figure 22 – Ratio of the average MAPE of all the models over the Simple one, for the days when the other models 
outperform the simple (left) and vice versa (right). 

 

Targeting to investigate the comparatively poor performance of the Enriched model, Figure 23 juxtaposes 

the 𝐴𝑃𝐸𝑝,𝑡
𝐻𝑝  of the aggregate consumption and the aggregate budget (for the latter parameter, the APE 

computation is aligned with the one for the former in Equation (31), using the corresponding predicted and 
the actual values of this parameter). It is easy to observe a noteworthy alignment of the two magnitudes, 
meaning that the accurate estimation of the budget strongly affects the performance of the model. This 
result is a further indication for the direction of our future work, where an extended model should take into 
consideration further parameters for the budget estimation (such as the income of the household). Once 
again it is important to emphasize that (even in its current form) we anticipate a noteworthy improvement 
of its performance, when it will be applied on a suitable dataset with adequate dynamic pricing events, as 
the one that will be derived from the WiseGRID pilot sites.  
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Figure 23 – Correlation between the accuracy of prediction of the aggregate budget and the aggregate 
consumption. 

 

Finally, Figure 24 presents the boxplot of the 𝑀𝐴𝑃𝐸
𝑖,𝑝

𝐻𝑝  and the 𝐴𝑃𝐸𝑝,𝑡
𝐻𝑝 , i.e., the respective evaluation metrics 

for the prediction of the individual and aggregate consumption during the peak period. Quantifying the 
findings, here also the Simple model outperforms in average terms the Enriched and the Normalized, since 

they achieve an average MAPE (
1

𝑀
 𝑀𝐴𝑃𝐸

𝑖,𝑝

𝐻𝑝
𝑖 ) equal to 40.32%, 49.96% and 41.81%. This finding is reflected 

to their performance in terms of the prediction of the aggregate consumption. More specifically, they achieve 

an average APE (
1

|𝐻𝑝|
 𝐴𝑃𝐸𝑝,𝑡

𝐻𝑝
𝑡∈𝐻𝑝 ) equal to 5.72%, 15.06% and 6.55%. Interestingly, the Enriched-AB model 

significantly outperforms all the others with respect to both metrics, achieving 7.74% and 1.35% for the 
average MAPE and APE respectively.  

 

  

Figure 24 – Boxplots of the MAPE of the individual consumption (left) and of the APE of the aggregate consumption 
(right) during the peak periods for all the models.  

 

6.3.5.2 Accuracy of the Simple model (alone) 

This section presents the further evaluation of the Simple model for all the days when it provides prediction 
results  𝑡𝜖𝐷 , and for both the peak and the off-peak period. Notice that this part of the performance 
evaluation is of particular practical interest also, since a retailer is based on the predictions of this model 
(during the days that announces the base value of the price) for purchasing adequate energy in the wholesale 
market, targeting to achieve a balanced portfolio.  
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Figure 25 (left) presents the boxplots of the MAPE of the users’ individual consumption, for the peak and the 

off-peak periods. Their average values (
1

𝑀
 𝑀𝐴𝑃𝐸𝑖,𝑝

𝐷
𝑖 ,  

1

𝑀
 𝑀𝐴𝑃𝐸𝑖,𝑜𝑝

𝐷
𝑖 ) are 37.02% and 25.49% respectively. 

Similarly, Figure 25 (right) depicts the APE of the aggregate consumption for both periods, and their average 

values (
1

|𝐷|
𝐴𝑃𝐸𝑝,𝑡

𝐷 , 
1

|𝐷|
𝐴𝑃𝐸𝑜𝑝,𝑡

𝐷 ) are 6.64% and 4.93%. These findings reveal that the model maintains almost 

the same performance over this extended evaluation set, indicating its robust behavior. 

 

  

Figure 25 – Accuracy of the predictions provided by the Simple model over all the days of the year. Boxplots of the 
MAPE of the individual consumption (left) and of the APE of the aggregate consumption (right) during both the 

peak and the off-peak periods. 

 

6.3.6 Hybrid model: Design and accuracy 

The previous section followed the “one model fits all” approach, in the sense that the prediction of each 
user’s consumption relied separately to each of the proposed models. In more technical terms, the demand 
functions were not user-specific, but the users were differentiated only with respect to their coefficients. 
This approach did not fully utilize the design properties of the proposed models. For instance (see Figure 20-
left and its explanation), the Enriched-AB model appears to provide more accurate predictions for the 
consumption of the users who have an intense load-shifting behaviour. Thus, the main idea in this section is 
to identify those users who are characterized by this attribute and associate the prediction of their 
consumption with the models that are designed to capture this effect, while keep using the Simple model for 
the rest of the users. This approach results to three hybrid models, namely 𝐻. 𝑥 where 
𝑥𝜖{𝐸𝑛𝑟𝑖𝑐ℎ𝑒𝑑,𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝐸𝑛𝑟𝑖𝑐ℎ𝑒𝑑 − 𝐴𝐵}, which arise from the combination of  the Simple model with 
each one of models in the set 𝑥. 

In what follows, a concrete description of the criterion which separates the users according to their shifting 
behaviour is presented. Let 𝑇𝑅 = {𝑡 − 30, 𝑡 − 29,… , 𝑡 − 1} be the set of days consisting the training period 
(common for all the models), provided as input to each model for predicting the consumption at day 𝑡. Then 
𝐻𝑇𝑅 = {𝑠 ∈ 𝑇𝑟|𝑃𝑝,𝑠 > 𝑃𝑜𝑝,𝑠} is the set of days within the training period when the peak-price is higher 

compared to the off-peak and 𝐸𝑇𝑅 = {𝑠 ∈ 𝑇𝑅|𝑃𝑝,𝑠 = 𝑃𝑜𝑝,𝑠} is the set of days when the price is equal for both 

periods. The parameter 𝑃𝐿𝑆𝑖,𝑡 measures the “Percentage Load Shifting” that the user 𝑖 performed during the 
training period before day 𝑡. 

 

𝑃𝐿𝑆𝑖,𝑡 =

1
|𝐻𝑇𝑅|

 𝑄𝑖,𝑜𝑝,𝑡
 

𝑡𝜖𝐻𝑇𝑟 −
1

|𝐸𝑇𝑅|
 𝑄𝑖,𝑜𝑝,𝑡

 
𝑡𝜖𝐸𝑇𝑟

1
|𝐸𝑇𝑅|

 𝑄𝑖,𝑜𝑝,𝑡
 

𝑡𝜖𝐸𝑇𝑟

 (34) 

The set 𝐾𝑇𝑅𝑡 includes the users with a positive value of PLS (𝑃𝐿𝑆𝑖,𝑡 > 0), i.e., those users who performed 
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load-shifting in the recent past before day 𝑡.  

 𝐾𝑇𝑅𝑡 = {𝑖 = 1,2, … ,𝑀|𝑃𝐿𝑆𝑖,𝑡 > 0} (35) 

Finally, the criterion which separates the users according to their shifting behaviour is as follows  

 
𝑐𝑖,𝑡 = 𝑃𝐿𝑆𝑖,𝑡 −

1

|𝐾𝑇𝑅𝑡|
 𝑃𝐿𝑆𝑖,𝑡

𝑖𝜖𝐾𝑇𝑅𝑡

 (36) 

If 𝑐𝑖,𝑡 > 0, meaning that the data of the recent past reveal that the user 𝑖 performs more intense load-shifting 
than the average, then the prediction of his consumption by the model 𝐻. 𝑥 is the same as the one provided 
by the model 𝑥. On the contrary, if 𝑐𝑖,𝑡 < 0, , then the Simple model provides the prediction.  

Figure 26 (right) presents for each day of evaluation interest (𝑡𝜖𝐻𝑝), the number of users who were found to 
satisfy the aforementioned criterion. Notice that their number does not depend on the prediction model, 
since the characterizing criterion is based only on actual data derived by the dataset. Figure 26 (left) presents 

the 𝐴𝑃𝐸𝑜𝑝,𝑡
𝐻𝑝  of all the models for the days 𝑡𝜖𝐻𝑝 and the interest mainly focuses to the hybrid models, since 

for the Simple one the performance is identical as in Figure 21. In average terms (
1

|𝐻𝑝|
 𝐴𝑃𝐸𝑜𝑝,𝑡

𝐻𝑝
𝑡∈𝐻𝑝 ) the 

Simple model achieves 4.45% (as in section 6.3.5.1), while the H.Enriched and the H.Normalized improve 
their performance and achieve 5.22%, and 7.99% respectively. Interestingly, the H.Enriched-AB model 
achieves 4.03%, meaning that it does not only improve its performance but also outperforms (even 
marginally) the Simple one. This latter finding indicates that the approach with the user-specific demand 
functions is meaningful, since it predicts the consumption with higher accuracy. 

 

  

Figure 26 – APE of the aggregate consumption for all the three models (left) and the users who satisfy the criterion 
(right). 

Concerning the performance of the models with respect to the individual consumption of each user, they 

achieve an average MAPE ( 
1

𝑀
 𝑀𝐴𝑃𝐸

𝑖,𝑜𝑝

𝐻𝑝
𝑖 ) equal with 27.48%, 29.76%, 28.95% and 27.30% in the 

aforementioned sequence. This result indicates that the better performance of the H.Enriched-AB model is 
due to its better predictions of each user’s consumption and does not rely on counterbalances of the 
individual misestimations when summed up.  

For completeness reasons, it is mentioned that the performance of additional hybrid models was also 
investigated, arising by the application of the criterion which separates the users between those who shift 
and those who don’t (𝑃𝐿𝑆𝑖,𝑡 > 0 𝑎𝑛𝑑 𝑃𝐿𝑆𝑖,𝑡 < 0 respectively). In this case also, the H.Enriched-AB model 
outperforms in average terms the Simple one, achieving an average APE of 4.19%. This is a further indicator 
that the aforementioned approach is meaningful, and is expected that the hybrid models will provide even 
more accurate predictions (compared to the Simple one) when applied at a dataset providing more dynamic 
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pricing events.  

6.3.7 Computation of the dynamic price 

This section introduces an algorithm to be utilized by the retailer in the case that he aims to implement an 
implicit DR campaign. More specifically, the algorithm computes the value of the dynamic price to be applied, 
targeting to achieve a collective reaction of all the users such that their aggregate consumption results to a 
specific level of load curtailment. The achieved curtailment is quantified by means of comparison with the 
baseline load of the users, i.e. their average load observed during the days of the recent past, when the base-
value of the price was announced by the retailer (in the absence of DR events – see Equation (37) for a 
concrete definition).  

The algorithm utilizes the demand function with its user-specific coefficients derived from the regression 
process, (which predicts the consumption of each individual user with respect to the price and the 
temperature) and dynamically updates the level of the price until the aggregated predicted consumption 
reaches the desired level. For clarity reasons, it is mentioned that the aforementioned iterative process for 
the identification of the suitable value of the price is virtually executed before its actual application, i.e. the 
retailer announces to its clientele only the value provided by the algorithm.  

In what follows, the pseudocode of the algorithm is presented. The considered scenario assumes that the 
retailer aims to achieve a specific reduction in KWh (notated as 𝛥𝑄𝑡𝑎𝑟𝑔𝑒𝑡), compared to the aggregate baseline 

load of its clientele (notated as 𝑄𝑏𝑎𝑠𝑒 . 

Algorithm: Identification of the dynamic price for the implementation of implicit DR  

𝑠𝑒𝑡 𝑝 = 𝑝𝑏                 %The identification of the dynamic price is initiated with the value of the base price. 

𝑠𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑡𝑒𝑝    %The update step of the price, with a small positive value: 0 < 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑡𝑒𝑝 ≪ 1. 

𝑠𝑒𝑡  𝑄𝑏𝑎𝑠𝑒 =  𝑄𝑖
𝑏𝑎𝑠𝑒

𝑖   %Computation of the aggregate baseline load of all the end-users 

𝑠𝑒𝑡 𝛥𝑄𝑡𝑎𝑟𝑔𝑒𝑡              %Set the desired decrease: Input for the algorithm, provided by the retailer. 

𝑠𝑒𝑡 𝛥𝑄 = 𝑄𝑏𝑎𝑠𝑒 −  𝑄𝑖
𝑝𝑟𝑒𝑑

 𝑝, 𝑇 𝑖   %Computation of the curtailment with respect to the initial price  

value and the temperature. 

𝑤ℎ𝑖𝑙𝑒 𝛥𝑄 < 𝛥𝑄𝑡𝑎𝑟𝑔𝑒𝑡  % Iterative process: Check if the achieved reduction meets the desired one. 

𝑠𝑒𝑡 𝑝 = 𝑝 + 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑡𝑒𝑝  % Increase the price, targeting to achieve additional reduction.  

𝑠𝑒𝑡 𝛥𝑄 = 𝑄𝑏𝑎𝑠𝑒 −  𝑄𝑖
𝑝𝑟𝑒𝑑

 𝑝, 𝑇 𝑖  % Computation of the curtailment w.r.t. the updated price. 

    value and the temperature. 

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

𝑠𝑒𝑡 𝑝𝑑 = 𝑝                  %The output of the algorithm: the price to be applied during the DR event 

  

In what follows, the outcome of the algorithm is presented, for all the days when the peak price is higher 
than the base one and the aggregate consumption of the users is lower compared to their baseline load 
(dataset). For simplicity reasons, only the predictions of the individual consumptions that are provided by 
the Simple model have been considered. 

Before proceeding, the concrete computation of the aggregate baseline load is provided. Recall from the 
previous section that the set 𝐸𝑇𝑅 includes those days within the training period when the price is equal 
during the peak and the off-peak period. The considered baseline consumption of user 𝑖 for the peak period 
of day 𝑡 is defined as follows:  

 
𝑄𝑖,𝑝,𝑡
𝑏𝑎𝑠𝑒 =

1

|𝐸𝑇𝑅|
 𝑄𝑖,𝑝,𝑡

𝑡∈𝐸𝑇𝑅

 (37) 
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Additionally, let 𝑄𝑝,𝑡
𝑏𝑎𝑠𝑒 =  𝑄𝑖,𝑝,𝑡

𝑏𝑎𝑠𝑒
𝑖  be the considered aggregate baseline load at day 𝑡 and recall that the 

𝑄𝑝,𝑡
 =  𝑄𝑖,𝑝,𝑡

 𝑀
𝑖=1  is the actual aggregate consumption at day 𝑡. In the following experiments, the desired 

curtailment is set equal to the actually observed consumption decrease, as computed by the provided records 
(dataset). 

 𝛥𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑄𝑝,𝑡
𝑏𝑎𝑠𝑒 − 𝑄𝑝,𝑡

  (38) 

Figure 27 (left), depicts the output of the algorithm, i.e., the value of the identified dynamic price. The 
aforementioned values are juxtaposed with the prices actually applied during these days, emphasizing that 
the target here is not a performance evaluation of the algorithm by means of their between comparison, 
since the actual objective of the retailer when the dynamic prices were applied is unknown (for instance the 
retailer may followed a different approach for the computation of the baseline load, than the one described 
above). Thus, the target here is limited just to demonstrate that the algorithm concludes to specific values 
and that they lie within a reasonable interval around the actual values from the dataset, (as it actually 
happens apart from two cases when the identified price is relatively much higher compared to the applied 
one). Finally, Figure 27 (right) depicts the reduction of the aggregate consumption compared to the baseline 
one, for those days when the dynamic price was applied.  

 

  

Figure 27 – The values of the dynamic price identified by the algorithm and provided by the dataset (left) and their 
impact on the peak aggregate consumption (right), for all the days of the year when a dynamic peak price was 

applied and the actual consumption was lower than the baseline one . 

 

6.4 ELECTRIC VEHICLE DEMAND FLEXIBILITY MODEL 

6.4.1 Brief description 

The main objective of the Electric Vehicle Flexibility Algorithm is being able to provide the possible variations 
over the initially foreseen charge profile for a certain electric vehicle through the day. This definition implies 
that the flexibility algorithm must have in advance a time and demand forecast information for every location 
where the electric vehicle will be plugged on. The output provides the charge and discharge options for an 
electric vehicle specifically, i.e., flexibility within the V2G frame. 

The operation of the algorithm is based on a minimum State of Charge required by the end of the period. 
This state of charge is the minimum required for the user’s needs; for this reason, this end-period state of 
charge could be higher than the expected one but never lower. This feature provides the possibility of a 
flexibility algorithm. 

If there are not any requirements, the algorithm behaviour is the same than the current charge points. An 
example of this profile is described in Figure 28. 
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Figure 28 – EV initial situation profile 

With this first approach, the forecast information must provide data about the initial state of charge and 
minimum state of charge at the end of the period. On the other hand, it must provide technical information, 
such as maximum power for charging or discharging. With this information, the plugged time is divided into 
periods for facilitating the calculus process. 

This information is enough to provide a flexibility output. However, this output is not a static value, since 
every new setpoint could change the flexibility for the subsequent ones. An example of flexibility estimation 
is shown in Figure 29. 

 

Figure 29 – Flexibility estimation graph 

In order to improve the comprehension of the algorithm results, the State of Charge evolution is exposed in 
Figure 30. A study of this graph allows to understand the algorithm behaviour when the battery of the Electric 
Vehicle is saturated (i.e., SOC reaches 100% capacity), adding a restriction to the flexibility output. 
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Figure 30 – Electric Vehicle State of Charge evolution 

This algorithm is scalable and allows to aggregate several Electric Vehicles for an Aggregated Flexibility. 

6.4.2 Baseline energy asset model 
In the following paragraphs the main variables involved in Electric Vehicle Demand Flexibility Estimation will 
be described. First of all, it is required to have information about certain needed parameters for characteriz-
ing the model: 

 Parameters 
o 𝑃𝑐ℎ𝑎𝑟𝑔𝑒: Maximum charge power provided by the charger. It depends on the connection 

mode and the charge point (kW). 
o 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒: Maximum injection power provided by charger. It depends on connection mode 

and the charge point (kW). 
o 𝑃𝑐𝑜𝑛: Maximum power available for the electrical installation where the charger is located 

(kW). 
o t: Timestep corresponding to the input arrays (h). 
o 𝑆𝑂𝐶𝑀𝐴𝑋: Maximum State of Charge of the Electric Vehicle (kWh) 

 Requirements 
o 𝑃𝑟𝑒𝑞: Charger power setpoint. It is the control variable of the process. Its value will be 

achieved by the charge point if the flexibility possibilities allow this setpoint (kW), either for 
charging (positive sign) or for discharging (negative sign). 

On the other hand, for being able to provide flexibility, a forecast input is needed for the following variables: 

 Forecast 
o 𝑃𝑙𝑜𝑎𝑑: Expected demand of the place (e.g.: user’s house, workplace…). It can be irrelevant at 

certain places (e.g.: public charge stations), in these cases, the expected demand is equal to 
zero and the only restrictions come from the charge point characteristics (maximum load 
𝑃𝑐ℎ𝑎𝑟𝑔𝑒 and maximum injection power 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 allowed) (kW). 

o 𝑆𝑂𝐶0: Initial State of Charge for certain period (kWh). 
o 𝑆𝑂𝐶𝑚𝑖𝑛: Minimal State of Charge at the end of the period (kWh). 
o Period: Time when EV is connected to charger point, from the last unplugged time to the 

next unplugged time (-). 

The Electric Vehicle Flexibility Algorithm outputs are the variables which represent the flexibility. These 
outputs will be expressed as arrays corresponding to the input ones: 

 Flexibility 
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o 𝑆𝑂𝐶: Expected State of Charge of the Electric Vehicle (kWh). 
o 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡: Expected Power consumption from the grid (kW). 

o Δ𝑃𝑙𝑜𝑎𝑑: Available power increment over the 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  (kW). 

o ΔPinj: Available power decrement over the 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  (kW). 

6.4.3 Model definition 
 

Each calculation step corresponds to a variable that could be one of the flexibility variables or an internal 
variable of the algorithm. Therefore, they will be expressed as a definition formula followed by the corre-
sponding restrictions (blue equations) that apply to each variable. Before presenting the equations, the fol-
lowing advices must be considered: 

 The “t” sub index means that the variable is calculated for every t-time step. 

 The “p” sub index means that the variable depends on the p plugged period.  

 Every calculus must be done with the corresponding period parameters (charge point characteristics, 
maximum available power from the grid, expected demand, plugged time and initial and minimum 
SOC). 

The following equations define the Electric Vehicle Flexibility Algorithm: 

 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡: Charge available power after considering the other consumptions. 

 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡 = 𝑃𝑐𝑜𝑛𝑡 − 𝑃𝑙𝑜𝑎𝑑𝑡  

0 ≤ 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡 ≤ 𝑃𝑐ℎ𝑟𝑉𝐸−𝑡  
(39) 

 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡: Charge available power. 

 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡 = 𝑃𝑑𝑖𝑠𝑐ℎ𝑉𝐸𝑡 (40) 

 𝑃𝑟𝑒𝑞𝑓𝑖𝑙−𝑡: Required power limited to available charge and discharge power. 

 𝑃𝑟𝑒𝑞𝑓𝑖𝑙−𝑡 = 𝑃𝑟𝑒𝑞𝑡 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡 ≤ 𝑃𝑟𝑒𝑞𝑡 ≤ 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡  
(41) 

 𝑃𝑝𝑡: Remaining power to achieve minimum State of Charge (for a period), considering the stored 

energy, the current power and the future power flow without requirements (maximum charge 
power). 

 

𝑃𝑝𝑡 = 𝑆𝑂𝐶mint − (𝑆𝑂𝐶𝑡−1 + 𝑃𝑟𝑒𝑞/𝑐ℎ𝑟−𝑡 · Δ𝑡 𝑃⃗ 𝑐ℎ𝑟𝑎𝑣 · Δ𝑡

𝑡𝑝

𝑡+1

) (42) 

 𝑃𝑒𝑓𝑓𝑡: Power flow between Electric Vehicle and the grid. 

 

𝑃𝑒𝑓𝑓𝑡 =  
𝑆𝑂𝐶mint − (𝑆𝑂𝐶𝑡−1 +  𝑃⃗ 𝑐ℎ𝑟𝑎𝑣 · Δ𝑡

𝑡𝑝
𝑡+1 )

Δ𝑡
, 𝑃𝑝𝑡 · Δ𝑡 < 0

𝑃𝑟𝑒𝑞/𝑐ℎ𝑟, 𝑃𝑝𝑡 · Δ𝑡 ≥ 0

 

𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡 ≤ 𝑃𝑒𝑓𝑓𝑡 ≤ 𝑃max𝑐ℎ𝑟−𝑡  

(43) 

 𝑃𝑟𝑒𝑞/𝑐ℎ𝑟: Power required for calculus. 

 
𝑃𝑟𝑒𝑞/𝑐ℎ𝑟 = {

𝑃𝑟𝑒𝑞𝑓𝑖𝑙−𝑡 , 𝑃𝑟𝑒𝑞𝑓𝑖𝑙−𝑡 ≠ 0

𝑃𝑚𝑎𝑥𝑙𝑜𝑎𝑑−𝑡 , 𝑃𝑟𝑒𝑞𝑓𝑖𝑙−𝑡 = 0
 

𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡 ≤ 𝑃𝑟𝑒𝑞/𝑐ℎ𝑟 ≤ 𝑃𝑚𝑎𝑥𝑐ℎ𝑟−𝑡  

(44) 
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 𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡: Maximum injection available power, considering SOC and limits, for achieving, at least, the 

minimum SOC. 

 

𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡 =
𝑆𝑂𝐶min𝑝 − [𝑆𝑂𝐶𝑡−1 +  𝑃⃗ 𝑐ℎ𝑟𝑎𝑣 · Δ𝑡

𝑡𝑝
𝑡+1 ]

0

𝑆𝑂𝐶𝑀𝐴𝑋

Δ𝑡
 

 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡 ≤ 𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡 ≤ 0 

(45) 

 𝑃𝑚𝑎𝑥𝑐ℎ𝑟−𝑡: Maximum charge available power, considering SOC and limits, for achieving, at least, the 

minimum SOC. 

 

𝑃𝑚𝑎𝑥𝑐ℎ𝑟−𝑡 =
[𝑆𝑂𝐶𝑡−1 + 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡 · Δ𝑡]0

𝑆𝑂𝐶𝑀𝐴𝑋  

Δ𝑡
 

0 ≤ 𝑃𝑚𝑎𝑥𝑐ℎ𝑟−𝑡 ≤ 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡  

(46) 

 𝑆𝑂𝐶𝑚𝑎𝑥𝑡: Maximum SOC available for charging. 

 

𝑆𝑂𝐶𝑚𝑎𝑥𝑡 = 𝑆𝑂𝐶𝑀𝐴𝑋 − 𝑃⃗ 𝑟𝑒𝑞𝑓𝑖𝑙Δ𝑡

𝑡𝑝

𝑡+1

 

0 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥𝑡 ≤ 𝑆𝑂𝐶𝑀𝐴𝑋 

𝑆𝑂𝐶𝑡−1 − 𝑃𝑚𝑎𝑥𝑖𝑛𝑗−𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥𝑡 ≤ 𝑆𝑂𝐶𝑡−1 + 𝑃𝑚𝑎𝑥𝑐ℎ𝑟−𝑡 

(47) 

With these variables, it is possible to obtain the flexibility variables as follows: 

 𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 + 𝑃𝑒𝑓𝑓𝑡  

0 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥𝑡  
(48) 

 

 
𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡 =

𝑆𝑂𝐶𝑡 − 𝑆𝑂𝐶𝑡−1
Δ𝑡

 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡 ≤ 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡 ≤ 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡  

(49) 

 

 ΔPloadt = 𝑃𝑐ℎ𝑟𝑎𝑣−𝑡 − 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡  

Δ𝑃𝑙𝑜𝑎𝑑𝑡 ≥ 0 
(50) 

 

 ΔP𝑖𝑛𝑗𝑡 = 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑣−𝑡 − 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡  

𝛥𝑃𝑖𝑛𝑗𝑡 ≤ 0 
(51) 

 

6.4.4 Model estimation 
The calculus process is summarized in Figure 31, where 𝐶ℎ𝑎𝑟𝑔𝑒𝑟 refers to any information about the 
charger station, and 𝑆𝑂𝐶−1 refers to the State of Charge of the previous point. 
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Figure 31 – Algorithm Implementation calculation scheme 
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7 DEMAND RESPONSE OPTIMIZATION FRAMEWORK 

7.1 BRIEF DESCRIPTION 

7.1.1 Purpose 

In order to enable integrated and personalized energy services we need to deploy intelligent control strate-
gies that take into account all operational aspects of the assets at hand (viz. commercial and residential build-
ings, batteries and EVs) while tackling grid imbalances and/or other business objectives (renewable energy 
sources (RES) exploitation, peak load management, etc.). These control strategies should attain to consumer 
behavioural patterns in order to achieve acceptance, maintain comfortable indoor conditions as well as ac-
commodate grid services requirements.  

Effective demand response strategies should continuously consolidate consumer preferences and facilitate 
them by providing intelligent control campaigns [21]. Such problems can be formulated as Mixed-Integer 
Linear/Non-Linear Programming (MILP or MINLP) optimization problems in order to eliminate grid imbal-
ances, minimize energy demand, cost or other relevant business objectives while maintaining occupant com-
fort within a given set of comfort boundaries [21] or abiding to elasticity constraints of consumer demand. 
Solving for the objective at hand over a given time horizon while constraining consumer comfort or pricing 
levels within the allowed boundaries, provides a set of permissible control strategies at the building level and 
provides insight of available potential flexibility to actors involved (DSO, aggregator, retailer, etc.) at portfolio 
level. 

The purpose of this chapter is to formalize and document the approach implemented for WiseGRID demand 
response optimization. Firstly, we describe the relevant DR strategies that are applicable to the WiseGRID 
context (section 7.1.2); next, we present the architecture of the DR framework (section 7.1.3) and then we 
provide a formalization of the optimization problem tackled in each business case (sections 7.2, 7.3) 

7.1.2 Relevant DR strategies 

We have to point out that two different types of DR strategies are defined in this project, covering in that 
way the alternative demand response business cases examined in the project; i.e. implicit and explicit 
demand response. The high-level description of the implicit and explicit DR strategy is presented in the 
following tables: 

 

Strategy Id Implicit Demand Response 

Strategy Description The main idea behind this functionality is to provide the Retailers a tool for 
managing load imbalances through novel dynamic pricing schemes. This strategy 
allows energy market participants to define fine-grained billing strategies for a 
portfolio of consumers based on their specific operational profiles (energy 
consumption during the night/day, energy consumption based on the day of the 
week etc.) 

Metrics Energy Consumption (daily load profile information) and forecasted Energy 
Consumption (daily load profile information), billing price levels, billing period etc. 

Workflow 
1. Total energy imbalance (DQ = QProduction – QDemand) time-series for a prede-

fined period (day-ahead) and for predefined intervals (e.g. hourly); 
2. Calculation of elasticity of demand for each asset for a given set of billing 

prices on a time-interval basis (e.g. hourly); 
3. Optimisation of portfolio elasticity based on pricing levels;  
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4. One universal pricing scheme is, thereafter, broadcasted to all assets in 
the portfolio; 

Table 9 – Implicit Demand Response Strategy 

 

Strategy Id Explicit Demand Response 

Strategy Description The main idea behind this functionality is to provide Aggregators a tool for 
responding to the demand flexibility requests in real-time through explicit demand 
response. This strategy allows energy market participants to cover load imbalances 
or DQ requests by the DSO, in the short-term future (2 hours ahead) by dispatching 
device-specific control requests to buildings based on their specific operational 
profiles (current and near-future energy consumption of devices, devices’ current 
status, indoor ambient conditions of buildings, consumer preferences, etc.) 

Metrics Energy Consumption (daily load profile). 

Workflow 
1. Total energy imbalance (DQ) time-series for a predefined period (2 hours 

ahead) and for predefined intervals (e.g. hourly) generated based on flex-
ibility request; 

2. Calculation of demand flexibility for each device in a building participating 
in DR, for a set of setpoints on a time-interval basis (e.g. hourly or 15-mi-
nute intervals); 

3. Filtering of buildings based on which actor is operating the tool and based 
on spatial restrictions; 

4. Ranking of buildings based on: 
a. their flexibility potential, 
b. number of DR triggers based on historical DR data, 
c. DR responsiveness of each asset based on historical DR data; 

5. Clustering analysis for the definition of groups of buildings with similar 
characteristics. Buildings are clustered in groups which reflect groups with 
high, medium and low ranking in a potential DR request;  

6. Optimization is then performed in order to select the assets that cover an 
explicit DR request, based on the ranking of each asset mentioned above; 

Table 10 – Explicit Demand Response Strategy 

The next section presents an overview of the architecture and the various components that comprise it along 
with their interconnections. After the high-level view of the architecture, the following sections of this 
chapter respectively treat each scenario and highlight the way to deal with the demand response strategy in 
question.  
 

7.1.3 Architecture overview 

The DR Framework is capable of managing both explicit and implicit Demand Response campaigns, as 
mentioned in the previous sections. Due to the inherent differences in the functionalities required to 
estimate the necessary metrics (e.g. flexibility vs. elasticity), the software architecture and components that 
comprise the respective tools are distinct. This subsection provides a high-level view of the two architectures; 
the following sections will delve in more detail. 

The following figure depicts an overall view of the components included in the implicit demand response 
architecture view. The retailer is the main actor using this view of the DR architecture in order to balance its 
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portfolio of users. Potential day-ahead imbalances (DQ time-series) are established by production and 
demand forecast modules; e.g. higher production figures caused for example because of RES production, 
and/or higher demand, that necessitate load balancing. To this end, WiseCOOP is responsible for determining 
the appropriate price scheme for day-ahead application at portfolio level. This price scheme is, thereafter, 
broadcasted to all the interested tools (i.e. WiseCORP, WG STaaS/VPP, WiseHOME, WiseEVP). 

 

Figure 32 – Implicit Demand Response Component Architecture 

A short description of the core components of the DR framework is provided: 

 Portfolio balancing module: this module estimates the necessary demand modification that is 
required during the following day in order to ensure the balance of the retailer’s portfolio. It uses the 
production (locally by retailer’s generation assets) and the demand forecast in order to estimate at 
which moments in time and how much imbalance is expected. This information is essentially 
equivalent to specific requests for demand profile modification using dynamic tariff schemes. 

 Asset elasticity estimation engine: the purpose of this component is to estimate the total portfolio 
demand of the retailer based on a price level it receives from the price calculation component 
through estimation and aggregation of the building level demand. It leverages building price elasticity 
models to evaluate the potential demand modification at the building level and for the entire 
portfolio. 

 Price calculation: this component keeps track of the price optimization process by exploring 
alternative pricing levels throughout the time slots of the target day and by invoking the component 
above to quantify the demand alteration. The outcome is the price time-series for the target day 
(following day) that optimally alleviates the imbalance calculated up front. 

 Dynamic tariff dispatch: the purpose of this component is to communicate the calculated dynamic 
price time-series via the WG IOP so that the other WiseGRID products receive it for their internal 
purposes. 

 

Respectively, the following figure depicts the explicit demand response architecture. In this case, requests 
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are received from the network operator or other market actor who requires provision of demand flexibility; 
this functionality is provided through the WiseCOOP tool, which initially analyses the DR signal and 
consequently ranks the available assets on a multi-criteria basis. Thereafter, a selection of assets that 
collectively meet the needs of the DR request receive a request to provide upward or downward flexibility. 
Each building is then responsible to translate this flexibility request into control signals to devices through a 
second level of optimization. 

 

Figure 33 – Explicit Demand Response Component Architecture 

 

A short description of the core components of the DR framework is provided: 
 Demand Response Message Handler: this component is responsible for the interactions with the IOP 

in order to ensure proper information exchange. It will also perform the hand-shaking with the DSO 

according to the USEF specifications to facilitate the negotiations between the DSO and all the actors 

who are willing to provide the requested flexibility. 

 Asset Filtering: the purpose of this module is to eliminate any asset that is not eligible to provide 

flexibility for the specific DR request. There may be several reasons for this, e.g. the location of its 

connection point on the grid, the maximum invocation number may have been reached, the asset 

may have declared itself unavailable due to maintenance, etc. 
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 Asset Ranking: this component aims to rank the available assets/buildings according to optimization 

criteria of interest to the aggregator. These may include the amount of flexibility offered, the flexi-

bility provisions reliability of the asset, the price it requests for flex provisioning, etc.  

 Optimised Asset Selection: the role of this component is to select the assets from the list that will 

comprise the asset subset that will be called to offer flexibility. Furthermore, this component will also 

define how much flexibility per asset should be delivered in order to optimise some objective func-

tion. 

 Building Flexibility Request Dispatch: this component is responsible for dispatching the flexibility 

requests to the specific assets that have been selected to participate in the specific explicit DR cam-

paign. It will inform the buildings about the timing and exact amount of demand modification ex-

pected to fulfil the DSO request. 

 Building Flexibility Information Collection: this component collects the available flexibility from the 

various assets/buildings that have a commercial agreement with the WiseCOOP user. These flexibil-

ities are the starting point for the explicit DR module in order perform all the aforementioned func-

tionalities. 

After giving an overview of the explicit and implicit DR architectures and briefly describing the components 
of the DR framework, we proceed with a more detailed description of the core components. 

7.2 IMPLICIT DEMAND RESPONSE COMPONENT DESCRIPTIONS 
 

7.2.1 Portfolio Balancing Component 
The Portfolio Balancing Component receives forecasts of production and demand from the respective mod-
ules in order to calculate potential day-ahead imbalances in the portfolio of assets. This interface is at the 
internal RabbitMQ message handler in a publish/subscribe manner. 

The following table gives an overview of the message for both production and demand forecast: 

Demand forecast is requested on the AMQP queue: “forecasting_demand” 

Production forecast is requested on AMQP queue: “forecasting_production” 

Message properties  

• reply_to: name of the queue where response will be delivered  

• correlation_id: free text for query/response correlation (RPC pattern https://www.rabbitmq.com/tutorials/tutorial-six-python.html)  

• Payload1:  

    o client_id: client identifier in the WiseGRID database.  

    o Horizon: number of days client wants to predict, starting from current day. From 1 to 7.  

    o Period: Time period between forecast samples. 15 min / 60 min. Default 60 minutes.  

 

The demand and production forecast request JSON body is as follows: 

{ 

"Client_id": 1,  

"Horizon": 1,  

"Period": 60  

} 

 

The JSON body for forecasting demand or production response is: 
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{ 

"errCode":0, 

"forecast": 

{ 

"1507154400":22.544, 

"1507158000":21.438, 

"1507161600":12.242, 

"1507165200":12.116, 

"1507168800":10.985, 

"1507172400":12.235, 

"1507176000":9.152, 

"1507179600":58.837, 

"1507183200":65.365, 

"1507186800":22.05, 

"1507190400":38.03, 

"1507194000":8.861, 

"1507197600":1.071, 

"1507201200":15.919, 

"1507204800":20.187, 

"1507208400":16.721, 

"1507212000":9.775, 

"1507215600":2.027, 

"1507219200":4.288, 

"1507222800":3.249, 

"1507226400":6.186, 

"1507230000":2.068, 

"1507233600":3.909, 

"1507237200":2.478 

}, 

"units":"kW" 

} 

 

Response properties  

errCode: Error code regarding possible exceptions.  

Forecast: Desired prediction formed by key value pair (“Timestamp” : Value) a) Timestamp: UNIX time seconds (UTC), b) Value: predicted value 
for the specified timestamp.  

Units: Value units.  

 

 

 

For each forecast to be generated, this module will take into consideration next inputs from the client:  

• The client identifier. One client identifier is associated to an aggregation thus the same client appli-
cation can request a forecast under different client identifiers.  

• The period of time between two consecutive forecasting values.  

• The total window horizon for the forecast output.  
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Subtracting demand forecast from production forecast gives the imbalance (DQ) time-series per defined in-
terval. This is then fed to the Building Elasticity Engine. The latter is comprised of the Price Calculation Com-
ponent and Asset Elasticity Estimation Engine that facilitate the definition of an appropriate pricing level for 
each interval, limiting in that way imbalances (DQ) at the portfolio level for the Retailer.  In this way, a dy-
namic pricing scheme is produced for day-ahead based on production and demand figures at the portfolio 
level. 

7.2.2 Price Calculation Component 

We highlight the role of Building Elasticity Engine component as the fundamental component in the 
optimization process of the tool. The role of the price calculation component is to define pricing levels for 
each interval where imbalance exists. These pricing levels are then broadcasted to WiseGRID tools. The most 
common alternatives for dynamic pricing schemes are defined for the project: 

 Time-of-use pricing (ToU) is a rate where the price per kWh depends on the time when electricity is 

consumed. Usually periods and prices are known well in advance, but offers where the definition of the 

day/night intervals may change according to the day-ahead spot price also exist. Prices can also be de-

fined as average prices for different time periods but be directly indexed to the day-ahead spot price.  

 Critical peak pricing (CPP) is a top-up rate whereby electricity prices substantially increase for the few 

days a year when wholesale prices are highest, but where prices are lower than average during the rest 

of the year. E.g. French Tempo tariff is a contract with a fixed price all year except for a maximum of 20 

days with very high prices. These days are notified to customers the day before.  

 With real-time pricing (RTP) wholesale electricity prices are directly passed through to final consumers 

and bills are calculated based on at least hourly metering of consumption, or with even higher granularity 

(e.g. 15 minutes). The price of such offers is composed of the wholesale price of electricity plus a supplier 

margin. 

This component is essentially a what-if simulation engine. The algorithmic framework for this module is de-

fined in this section. 

The users will actively participate in DSM project activities, towards proactively reacting in abnormal market 
or grid conditions.  An indicative structure of the CPP schema for a given portfolio of assets is presented in 
the following figure. 
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Figure 34 – Critical Peak Pricing Schema 

In this case scenario, a flat tariff schema is the baseline, with a Critical Peak pricing event activated as a 
behavioural triggering message. 

On the other hand, an indicative ToU format is exemplified in the following figure.  

 

 

Figure 35 – Time of Use Pricing Schema 

The Price Calculation Component receives the DQ time-series and initiates a communication with the Asset 
Elasticity Estimation Engine. The optimization formulation defined below is utilized in order to define the 
appropriate pricing level for the given time intervals. Once the pricing levels have been defined for each 
interval, these are then broadcasted to the WG IOP for all the interested tools. 

For implicit demand response, the elasticity modelling framework is used as described in Chapter 6 in order 
to predict day-ahead demand elasticity for each asset. Control variables in this case are the pricing levels 
defined in the contractual agreements between the interested parties. The formalization of the optimization 
approach used in this work is given below: 

min Jk    

s.t.   (52) 

 u(k + j | k)  ∈ [p0, p1, …, pN] ∀ j = 1, …, Nu  
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Jk is the sum of squared residuals between flexibility requested per interval and potential flexibility at the 
same interval. Nu is the future control horizon; u(k + j | k)  is the control signal at time k + j, computed at time 
k; pj is the discrete pricing level (implicit DR); 

The objective of the implicit demand response optimization process is the minimization of portfolio 
imbalances. The objective function Jk is selected as such so that its minimization will cover any imbalances 
that are identified during the Portfolio Balancing step. With respect to implicit demand response at time j 
within the time horizon, the residual of the jth interval is defined as follows: 

 

 𝑟𝑗 = 𝑑𝑞𝑗 −  𝑓𝑙𝑒𝑥 𝑢𝑧 
𝐴𝑠𝑠𝑒𝑡𝑠
𝑧=1      (53) 

And the respective objective function to be minimized takes the following form: 

 𝐽𝑘 =  (𝑟𝑗)
2𝑁𝑢

𝑗      (54) 

Initially, a DQimbalance is defined which is a vector of dqj imbalances per interval (24 values, one for each hour 
for day-ahead); i ∈ Assets (in this case buildings in the portfolio) and uj is the pricing signal at time j. Note 
that flexibility is calculated by the Asset Elasticity Simulation Engine component for a given pricing level. The 
selected pricing level for each interval is universally applied to all assets (buildings) as a result of the fairness 
principle. According to the assumptions of the implicit demand response business case defined in section 
5.1.2, and in respect to input from the relevant actors, all customers receive and are billed according to the 
same energy price. Hence, all customers will receive the same retail price per interval for day-ahead. 

Moreover, in respect to the elasticity of demand that each asset exhibits, we are only considering the con-
tractually agreed pricing levels in order to balance the portfolio (implicit demand constraint).  

The business objectives incorporate the implicit demand business case examined in the project, namely: 

 Implicit Demand Side management (ToU, CPP & RTP) strategies to address peak load management and 

portfolio balancing. 

The JSON representation of the internal message used for requesting a price calculation for a list of 
imbalances per interval is presented in the following table: 

The JSON body request should have the format: 

{ 

  "space": "", 

  "type": "implicit", 

  “dsm_request”: [ 

      { 

          "value": "XX", 

         "timePeriod":"0" 

      }, 

      { 

          "value": "XX", 

         "timePeriod":"1" 

      }, …, 

      { 
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          "value": "XX", 

         "timePeriod":"23" 

      } 

] 

} 

The configuration parameters required for the simulation analysis are: the type of DR request (directly 

associated with the type of contract); in WiseGRID project: “implicit” demand response type. The 

“dsm_request” is a list of objects (as defined by the Portfolio Balancing Module): 

“dsm_request” in the implicit demand response case is a list of 24 objects (day-ahead pricing) starting with 

timePeriod : “0”, and ending to ”23”, and “value” indicating the imbalance identified at that particular 

interval. 

Figure 36 – Internal Implicit DR request Interface of WiseCOOP for Retailer 

For the implicit demand case, this message is used internally by the retailer in order to balance its own 
portfolio of assets. 

In conclusion, the price calculation component is intertwined with the Asset Elasticity Estimation Engine in 
order to perform what-if simulation analyses. It feeds pricing levels to the Asset Elasticity Estimation Engine 
on request of the optimization process. In other words, once the price calculation component processes 
imbalance data, the outcome is forwarded to the Asset Elasticity Estimation Engine (described in the next 
section) which returns the available flexibility. 

7.2.3 Asset Elasticity Estimation Engine 

After presenting the Price Calculation Component above, we proceed with the definition of the Asset 
Elasticity Estimation Engine as an integral part of implicit demand response framework. Thus, the framework 
towards the extraction of high-level demand elasticity profiles is provided in this section. The functional role 
of this module is: 

a) to periodically report the maximum available elasticity at portfolio level; 
b) to calculate ad-hoc demand elasticity figures (day-ahead forecast of demand flexibility potential) 

that will further facilitate decision-making at portfolio level; i.e. demand elasticity for what-if 
simulation analysis engine (broadcasting pricing schemes to relevant WiseGRID tools); 

In order to facilitate both of the abovementioned functional roles we define an interface which will 
periodically update high-level demand elasticity profiling model parameters. This is the result of the training 
process described in section 6.3 and is presented in the following figure. 
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Figure 37 – Demand elasticity profiling model parameters 

In addition, the JSON message to report the model parameters is specified in the following code 

AMQP queue: “postElastisticityProfile/assetID” 

With JSON message 

{ 

"output": { 

"Period": [ 

      { 

        "periodId": "2", 

        "Timezone": "2001-12-17T09:30:47-05:00", 

        "fromTime": "00:00", 

        "toTime": "01:00", 

        "peakTime": "1", 

        "PriceProfile": [ 

          { 

            "priceId": "2", 

            "priceFrom": { 

              "inclusive": "1", 

              "text": "3.14159" 

            }, 

            "priceTo": { 

              "inclusive": "1", 
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              "text": "4.14159" 

            }, 

            "ownPriceElasticity": "0.314159", 

            "delta": "3.14159" 

          }, 

          { 

            "priceId": "2", 

            "priceFrom": { 

              "inclusive": "1", 

              "text": "4.14159" 

            }, 

            "priceTo": { 

              "inclusive": "1", 

              "text": "5.14159" 

            }, 

            "ownPriceElasticity": "0.34159", 

            "delta": "3.14159" 

          } 

        ] 

      }, 

      { 

        "periodId": "2", 

        "Timezone": "2001-12-17T09:30:47-05:00", 

        "fromTime": "02:00", 

        "toTime": "03:00", 

        "peakTime": "0", 

        "PriceProfile": [ 

          { 

            "priceId": "2", 

            "priceFrom": { 

              "inclusive": "1", 

              "text": "3.14159" 

            }, 

            "priceTo": { 

              "inclusive": "1", 

              "text": "3.14159" 
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            }, 

            "ownPriceElasticity": "3.14159", 

            "delta": "3.14159" 

          }, 

          { 

            "priceId": "2", 

            "priceFrom": { 

              "inclusive": "1", 

              "text": "3.14159" 

            }, 

            "priceTo": { 

              "inclusive": "1", 

              "text": "3.14159" 

            }, 

            "ownPriceElasticity": "3.14159", 

            "delta": "3.14159" 

          } 

        ] 

      } 

    ] 

  } 

} 

 

 

7.2.4 Maximum Elasticity Interfaces Definition 

In the previous section, the building elasticity engine and its relevance to the DR optimization framework was 
defined. In this section, the messages and interfaces for the periodic report of high-level demand elasticity 
figures on each asset per time-interval based on the price calculation module described in section 7.2.2 are 
documented. This information is made available internally to the Retailer and is not part of the broadcasted 
signal of pricing levels to the WG IOP. 

The following is the outcome of the process for maximum elasticity estimation for each asset: 

The JSON body response (simulated) for implicit DR should have the following format: 

{ 

 "market" : "ToU, CPP or RTP?", 

 “timestampCreated” : “datetime”, 

 “ParticipationList”: [ 

    { 
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      "assetId": "asset01", 

      “dsmParticipation” : [ 

              {“interval”: "0", 

               “value”: “xxxx”}, 

              {“interval”: "1", 

               “value”: “xxxx”}, 

                 . 

               {“interval”: "23", 

               “value”: “xxxx”}, 

       ] 

    }, 

    { 

      "assetId": " asset02", 

      “dsmParticipation” : [ 

              {“interval”: "0", 

               “value”: “xxxx”}, 

              {“interval”: "1", 

               “value”: “xxxx”}, 

                 . 

               {“interval”: "23", 

               “value”: “xxxx”}, 

       ] 

    },… 

  ] 

} 

 

The above represents a full list of the assets in the portfolio considering the maximum available elasticity 
(“value”) per interval. Thereafter, the optimization process is responsible for defining the appropriate pricing 
signals in order to optimally balance the associated portfolio imbalances. 

7.2.5 Optimal Price Selection and Dispatch (HYP) 

WiseCOOP reports the pricing scheme to all interested applications (WiseCORP, WG STaaS/VPP, WiseEVP, 
WiseHOME) in order to exploit it in their internal processes (energy optimization, visualization, etc.). The 
following message represents the pricing scheme. 

 

while the JSON body for broadcasting the pricing scheme is: 

{ 

 "market": "ToU, CPP or RTP?", 
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 "systemUser": "retailer01", 

 "timestampCreated": "datetime", 

 "dsmPriceList": [{ 

   "interval": "0", 

   "value": "xxxx" 

  }, 

  { 

   "interval ": "1", 

   "value": "xxxx" 

  }, 

                            ……. 

  { 

   "interval": "23", 

   "value": "xxxx" 

  } 

 ] 

} 

“interval” represents the time interval (hour) for day-ahead application, “value” represents the price level for the specific interval as selected by 
the optimization process. After consultation with business partner, the pricing scheme should be the same for all assets as per the fairness as-
sumption.  

 

The relevant modules that comprise implicit demand response architecture along with their interfaces have 
been defined. Next, we define the tools used in case of near real-time demand response requests (explicit 
demand response). These tools accommodate the need of an Aggregator that may want to offer potential 
flexibility when triggered by the DSO. Such a service is offered at portfolio level by accumulating potential 
demand response of controllable devices at building level. 

7.3 EXPLICIT DEMAND RESPONSE COMPONENTS 

7.3.1 Demand Response Message Handler 
As per the description in Deliverable D13.1 [22], upon forecast of a congestion problem in the grid, the DSO 
evaluates the necessary actions (increase/decrease of demand in a certain area of the grid) and subsequently 
publishes a flexibility request. The WG IOP is configured in such a way that the request reaches each one of 
the aggregators participating in the platform. 

This message is received at the Demand Response Message Handler module and is propagated accordingly.  

AMQP exchange name: “flexReqs” 

Message properties: 

 Reply_to: “flexOffers” 

 Correlation_id 

Message payload: FlexRequest 
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Once the request sent by the DSO is received through the WG IOP, it is evaluated and processed as described 
in following workflow: 

1. Firstly, the Aggregator filters and ranks the assets at its disposal, evaluating in this way the maxi-
mum available flexibility (section 7.3.2); 

Section Parameter Description 

FlexRe-
quest 

 FlexRequest messages are used by BRPs and DSOs to request flexibility from Aggrega-
tors. In addition to one or more PTU elements with Disposition=Requested, indicat-
ing the actual need to reduce consumption or production, the message should also 
include the remaining PTUs for the current Period where Disposition=Available, so 
the receiving Aggregator can decide whether time-shifting load is an option to meet 
the needs of the requesting party. 

 FlexRe-
quest.PTU-Du-
ration 

ISO 8601 time interval (minutes only, for example PT15M) indicating the duration of 
the PTUs referenced in this Flex* message. Although the PTU length is a market-wide 
fixed value, making this assumption explicit in each message is important for valida-
tion purposes, allowing implementations to reject messages with an errant PTU dura-
tion. The project will use PTU duration of 15 minutes. 

 FlexRequest.Pe-
riod 

Day (in yyyy-mm-dd format) the PTUs referenced in this Flex* message belong to. 

 FlexRe-
quest.TimeZone 

Time zone ID (as per the IANA time zone database, http://www.iana.org/time-zones, 
for example: Europe/Amsterdam) indicating the UTC offset that applies to the Period 
referenced in this message. Although the time zone is a market-wide fixed value, 
making this assumption explicit in each message is important for validation purposes, 
allowing implementations to reject messages with an errant UTC offset. TimeZone 
will be a fixed value per pilot site. 

 FlexRe-
quest.Conges-
tionPoint 

Entity Address of the Congestion Point this Flex* message applies to. 

 FlexRequest.Se-
quence 

Sequence number of this message, which should be incremented each time a new re-
vision of a Flex* message is sent. To ensure unique incrementing sequence numbers, 
use of the format yyyymmddHHMMSSssss (year, month, day, hour, minutes, seconds 
and milliseconds, respectively) is highly recommended. 

 FlexRequest.Ex-
pira-
tionDateTime 

Date and time, including the time zone (ISO 8601 formatted as per 
http://www.w3.org/TR/NOTE-datetime) until which the Flex* message is valid. DSO 
will only process offers received before this expiration timestamp. 

PTU  The PTU element represents one or more Program Time Units. 

 PTU.Disposition Indication whether the Power specified for this PTU represents available capacity or 
a request for reduction/increase (Valid value: “Requested”). WiseGRID Cockpit will 
only produce requests for reduction/increase of power. 

 PTU.Power Power specified for this PTU in Watts. A positive value indicates that power flows to-
wards the Prosumer (consumption), a negative value indicates flow towards the grid 
(production). 

 PTU.Start Number of the first PTU this element refers to. The first PTU of a day has number 1. 

 PTU.Duration The number of the PTUs this element represents. Optional, default value is 1. 

Table 11 – Flexibility Request Message used by BRPs and DSOs 
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2. Then, a compensation for the provision of the requested flexibility amount is calculated, based on 
a price per kWh defined by the Aggregator (section 7.3.4); 

3. Thereafter, a response message is sent to the DSO via the WG IOP (section 7.3.4) with a specific 
offer for the required flexibility; 

4. Lastly, in case the DSO accepts the offer, a DR request is dispatched to the selected energy assets 
(section 7.3.5) (or rejects the offer in which case no further action is required). 

7.3.2 Filtering and Ranking modules 

Narrowing down to and ranking a selection of assets that comprise a portfolio is an important aspect of the 
explicit DR optimization framework. In this way portfolio-level business objectives relevant to stakeholders 
involved can be incorporated. In WiseGRID we highlight the importance of this component as an enabler to 
effective peak-load management and transformation of demand-driven Virtual Power Plants (VPPs) to 
active energy market commodities, competitive against traditional resources (power generation) used for 
the provision of balancing and ancillary services to the distribution grid.  

Especially, peak-load management and congestion management hold a significant position in WiseGRID. By 
properly managing the flexibility offered by demand and optimally coordinating highly flexible portfolios, the 
DR optimization framework can provide:  

(a) maximum penetration of RES into the energy mix,   
(b) significant peak demand reduction,  
(c) enhanced security of energy supply, and  
(d) monetary benefits for prosumers (energy cost savings and avoidance of high energy charges during 

peak periods, incentives, rebates, etc.) and Aggregators (trading an inexpensive and highly 
competitive commodity – demand flexibility – in the balancing and ancillary services markets). 

Filtering of assets that participate in an explicit DR campaign is based on: 

i. geographical positioning and grid connection point; and  
ii. whether the asset has an active engagement with an aggregator for participation in DR 

campaigns with a Service Level Agreement (SLA) that permits an additional trigger.  

In this way, the relevant actor can target specific areas that are predicted to have network congestion issues 
and, also, perform peak-load management. After selecting the assets to be targeted (portfolio), these are 
then ranked based on their: 

a) maximum available flexibility; 2-hours ahead in the case of explicit demand response; 
b) historical demand response behaviour; this is a measure of how effectively each asset 

responded to past DR requests; 
c) past number of DR triggers; in other words, this represents the number of times that each 

particular asset (building in this context) has been triggered in the past to perform a DR 
campaign. 

In regards to maximum available flexibility, each asset is rated using the following equation: 

 𝐽𝑓𝑙𝑒𝑥
𝑎𝑠𝑠𝑒𝑡 =  𝑞 𝑗, 𝑢 𝑁

𝑗      (55) 

Where j ∈ [0, N) is the time-step (interval), N is the time-horizon, u is the control variable (setpoints), and q 
represents the potential flexibility at time interval j and for control variable u. Note that for explicit demand 
response this aggregation is performed over the available devices inside the building and is subject to comfort 
boundary constraints as described in Chapter 6.2. Hence, a maximization of flexibility is performed for a given 
time horizon and an allowable list of control variables (device control actions that retain the occupant’s 
comfort). 

In respect to historical demand response of each asset, the following average ratio is used: 
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𝐽𝐷𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠
𝑎𝑠𝑠𝑒𝑡 =

1

𝐷
 

𝐷𝑅𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
𝑎𝑠𝑠𝑒𝑡

𝐷𝑅𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
𝑎𝑠𝑠𝑒𝑡

𝐷
𝑖      (56) 

DRrequested represents the historical DR signals sent to the specific asset while DRperformed is the actual flexibility 
given; D is the total number of DR signals sent to the respective asset irrespective of implicit of explicit DR 
request. This equation is the average DR responsiveness of the asset (%). 

Last but not least, the total number of DR triggers is accounted for by: 

 𝐽𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠
𝑎𝑠𝑠𝑒𝑡 = 𝐷     (57) 

Where D, is the total number of DR signals sent to the specific asset. 

Ranking of the assets is then performed by using a weighted objective function:  

 𝐽 = 𝑤1 ∗ 𝐽𝑓𝑙𝑒𝑥
𝑎𝑠𝑠𝑒𝑡 +𝑤2 ∗ 𝐽𝐷𝑅𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠

𝑎𝑠𝑠𝑒𝑡 −𝑤3 ∗ 𝐽𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠
𝑎𝑠𝑠𝑒𝑡      (58) 

Where the number of DR triggers acts as a penalising factor to the ranking of the asset. This aims to distribute 
the triggers to action among all involved buildings rather than calling upon the same buildings every time. 
This is fair in the sense that all buildings can reap the potential benefits, and the better ones (e.g. more 
reliable or performant ones) do not suffer from overuse and fatigue. Note that each objective is normalised 
over the maximum value observed in the portfolio (J/Jmax). 

Towards this direction, comfort-based demand flexibility is characterised for each asset and paves the way 
for defining and executing highly effective demand response strategies at portfolio level for the 
implementation of peak-load management strategies and the definition of VPP setups (utilizing the 
aggregated flexibility of DERs). 

The functional aims of these tools are to: 

1. periodically report a sorted and ranked list of assets along with their available potential 
flexibility (every 15 or 30 minutes), 

2. act as the layer which disaggregates the DR signal requested to each asset (dispatch DR signal 
to each asset) 

For explicit demand response, DER Models described in section 6.2 play a pivotal role in predicting the future 
behaviour of each device type and therefore they are useful for near-future control optimization. For the 
explicit demand response case, control variables are setpoints for the controllable loads (devices). The for-
malization of the optimization approach used is given below (within WiseCORP): 

min Jk    

s.t.    

 umin ≤ u(k + j | k)  ≤ umax ∀ j = 1, …, Nu (59) 

 ymin ≤ ŷ(k + j | k) ≤ ymax ∀ j = 1, …, Nu  

Where, Nu is the future control horizon; u(k + j | k)  is the control signal at time k + j, computed at time k;  
umin. umax are the lower and upper control boundaries of the device (explicit DR); ymin and ymax are the lower 
and upper comfort boundaries learnt for the consumer (explicit DR).  

The objective function J is selected as such so that to meet the requested amount of flexibility within the 
requested time-horizon (2-hours ahead):             

 𝐽𝑘 = (𝐷𝑄𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 −   𝑓𝑙𝑒𝑥(𝑢𝑖𝑗)
𝑁𝑢
𝑗=1

𝐷𝑒𝑣𝑖𝑐𝑒𝑠
𝑖 )

2
     (60) 

Where i ∈ Devices and uj is the control signal for device i at time j. Note that flex(uj) is calculated as described 
in section 6.2.8 for a given setpoint and device.  
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The goal is to control a set of devices that affect visual and thermal comfort in order to deliver a potential 
amount of demand flexibility within a set of thermal and visual comfort boundaries.  

For the explicit DR triggering, the JSON representation of the message format between the Aggregator and 
the explicit demand response layer of WiseCOOP is presented in the following table: 

The JSON body request should have the format: 

{ 

  "space": "North", 

  "type": “explicit”, 

  “dsm_request”: [ 

      { 

          "value": "XX" or null, 

         "timePeriod":"120" 

      } 

] 

} 

The configuration parameters required for the simulation analysis are: the type of DR request (directly 

associated with the type of contract); in WiseGRID project: “explicit” demand response type, the region to 

spatially limit the portfolio and a list of the demand side request over a time-period. value can be null in case 

a periodic report of demand flexibility is required. 

For explicit the dsm_request is a list of 1 object with timePeriod: “120” (i.e. minutes. This should always be 

multiples of 15-minute intervals, with 120 being the maximum – 2 hours) 

Figure 38 – WiseCOOP Explicit Demand Response Interface with Aggregator 

For the explicit demand response case, this message is used by the Aggregator to trigger explicit DR and 
respond to DSO’s requests or request a periodic report (“value” is set to null).  

7.3.3 Periodic Report of Portfolio Flexibility 

In the case of periodically reporting the available flexibility, the following represents the message 
incorporating the maximum demand flexibility per building: 

The JSON body response (simulated) for explicit DR should have the following format: 

{ 

 "market" : "explicit", 

 “timestampCreated” : “datetime”, 

 “ParticipationList”: [ 

    { 

      "assetId": "asset01", 

      “dsmParticipation” : [ 

              {“interval”: "0", 

               “value”: “xxxx”,  
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               “cost” : “XXX”}, 

              {“interval”: "1", 

               “value”: “xxxx”,  

               “cost” : “XXX”}, 

                 … 

               {“interval”: "23", 

               “value”: “xxxx”,  

               “cost” : “XXX”} 

       ] 

    }, 

    { 

      "assetId": " asset02", 

      “dsmParticipation” : [ 

              {“interval”: "0", 

               “value”: “xxxx”,  

               “cost” : “XXX”}, 

              {“interval”: "1", 

               “value”: “xxxx”,  

               “cost” : “XXX”}, 

                 … 

               {“interval”: "23", 

               “value”: “xxxx”,  

               “cost” : “XXX”} 

       ] 

    },… 

  ] 

} 

The above JSON body defines the maximum demand flexibility available for the buildings included in the 
portfolio. We now proceed with the compensation calculation of the Aggregator and the response message 
to the DSO. 

7.3.4 Aggregator Compensation Calculation for Portfolio Flexibility 
As per the description in Deliverable D13.1 [22], each one of the aggregators will process the request, evalu-
ate the feasibility of responding to it (accordingly to the available resources), and finally post an offer, de-
scribing up to which extent they can support the DSO, and the associated cost of that action. 

The Aggregator is compensated only for the triggered assets. Hence, the ranking process outlined above 
defines the bid and, therefore, the set of buildings that are anticipated to be triggered. Consequently, their 
aggregated cost is the compensation sent back to the DSO as exemplified in the format presented in the 
following table per time unit. 
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Queue: “FlexOffers” (accordingly to the “reply_to” property of the FlexRequest) 

Message properties: 

 reply_to: name of the queue where the aggregator expects the offer or rejection 

Correlation_id: correlation id of the flex request 
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Section Parameter Description 

FlexOf-
fer 

 FlexOffer messages are used by Aggregators to make DSOs and BRPs an offer for 
providing flexibility. A FlexOffer message contains a list of PTUs, with for each PTU the 
change in consumption or production offered, plus the price for this amount of flexi-
bility. FlexOffer messages should only be sent once a FlexRequest message has been 
received and must never be sent unsolicited. Note that multiple FlexOffer messages 
may be sent based on a single FlexRequest: for example, one offer that exactly 
matches the power reduction requested, plus one with a different amount of reduc-
tion, with more favourable pricing. When responding to a BRP-originated FlexRe-
quest, an Aggregator may send an empty FlexOffer message (i.e. a message not con-
taining any PTU elements) in order to indicate that no flexibility is available. 

 FlexOf-
fer.FlexRequest-
Sequence 

Sequence number of the FlexRequest message this request is based on. The combina-
tion of FlexRequestOrigin and FlexRequestSequence should be unique. 

 FlexOffer.Cur-
rency 

ISO 4217 code indicating the currency that applies to the prices listed for each PTU 
(EUR for all pilot sites) 

 FlexOffer.PTU-
Duration 

ISO 8601 time interval (minutes only, for example PT15M) indicating the duration of 
the PTUs referenced in this Flex* message. Although the PTU length is a market-wide 
fixed value, making this assumption explicit in each message is important for valida-
tion purposes, allowing implementations to reject messages with an errant PTU dura-
tion. The project will use PTU duration of 15 minutes. 

 FlexOffer.Period Day (in yyyy-mm-dd format) the PTUs referenced in this Flex* message belong to. 

 FlexOffer.Time-
Zone 

Time zone ID (as per the IANA time zone database, http://www.iana.org/time-zones, 
for example: Europe/Amsterdam) indicating the UTC offset that applies to the Period 
referenced in this message. Although the time zone is a market-wide fixed value, 
making this assumption explicit in each message is important for validation purposes, 
allowing implementations to reject messages with an errant UTC offset. TimeZone will 
be a fixed value per pilot site. 

 FlexOffer.Con-
gestionPoint 

Entity Address of the Congestion Point this Flex* message applies to. 

 FlexOffer.Se-
quence 

Sequence number of this message, which should be incremented each time a new re-
vision of a Flex* message is sent. To ensure unique incrementing sequence numbers, 
use of the format yyyymmddHHMMSSssss (year, month, day, hour, minutes, seconds 
and milliseconds, respectively) is highly recommended. 

 FlexOffer.Expi-
rationDateTime 

Date and time, including the time zone (ISO 8601 formatted as per 
http://www.w3.org/TR/NOTE-datetime) until which the Flex* message is valid. DSO 
will only process offers received before this expiration timestamp. 

PTU  The PTU element represents one or more Program Time Units. 

 PTU.Power Power specified for this PTU in Watts. A positive value indicates that power flows to-
wards the Prosumer (consumption), a negative value indicates flow towards the grid 
(production). 

 PTU.Start Number of the first PTU this element refers to. The first PTU of a day has number 1. 

 PTU.Duration The number of the PTUs this element represents. Optional, default value is 1. 

 PTU.Price The price offered or accepted for supplying the indicated amount of flexibility in this 
PTU. 

Table 12 – Flexibility Offer message used by Aggregators to DSOs and BRPs 
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The DSO waits until the validity time of the request is reached and evaluates the set of received offers. Upon 
decision, the order/rejection to the corresponding aggregators is sent. 

Queue: accordingly to reply_to parameter of the offer 

Payload: FlexOrder 
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Sec-
tion 

Parameter Description 

Flex-
Order 

 FlexOrder messages are used by DSOs and BRPs to purchase flexibility from an Aggre-
gator based on a previous FlexOffer. A FlexOrder message contains a list of PTUs, with, 
for each PTU, the change in consumption or production to be realized by the Aggrega-
tor, plus the accepted price to be paid by the DSO or BRP for this amount of flexibility. 
This PTU list should be copied from the FlexOffer message without modification: Ag-
gregator implementations will (and must) reject FlexOrder messages where the PTU list 
is not exactly the same as offered. 

 FlexOrder.Cur-
rency 

ISO 4217 code indicating the currency that applies to the prices listed for each PTU 
(EUR for all pilot sites) 

 FlexOrder.PTU-
Duration 

ISO 8601 time interval (minutes only, for example PT15M) indicating the duration of 
the PTUs referenced in this Flex* message. Although the PTU length is a market-wide 
fixed value, making this assumption explicit in each message is important for validation 
purposes, allowing implementations to reject messages with an errant PTU duration. 
The project will use PTU duration of 15 minutes. 

 FlexOrder.Pe-
riod 

Day (in yyyy-mm-dd format) the PTUs referenced in this Flex* message belong to. 

 FlexOrder.Time-
Zone 

Time zone ID (as per the IANA time zone database, http://www.iana.org/time-zones, 
for example: Europe/Amsterdam) indicating the UTC offset that applies to the Period 
referenced in this message. Although the time zone is a market-wide fixed value, mak-
ing this assumption explicit in each message is important for validation purposes, al-
lowing implementations to reject messages with an errant UTC offset. TimeZone will 
be a fixed value per pilot site. 

 FlexOrder.Con-
gestionPoint 

Entity Address of the Congestion Point this Flex* message applies to. 

 FlexOrder.Se-
quence 

Sequence number of this message, which should be incremented each time a new revi-
sion of a Flex* message is sent. To ensure unique incrementing sequence numbers, use 
of the format yyyymmddHHMMSSssss (year, month, day, hour, minutes, seconds and 
milliseconds, respectively) is highly recommended. 

 FlexOrder.Expi-
rationDateTime 

Date and time, including the time zone (ISO 8601 formatted as per 
http://www.w3.org/TR/NOTE-datetime) until which the Flex* message is valid. DSO 
will only process offers received before this expiration timestamp. 

 FlexOrder.Or-
derReference 

Order number assigned by the BRP or DSO originating the FlexOrder. To be stored by 
the Aggregator and used in the settlement phase. 

PTU  The PTU element represents one or more Program Time Units. 

 PTU.Power Power specified for this PTU in Watts. A positive value indicates that power flows to-
wards the Prosumer (consumption), a negative value indicates flow towards the grid 
(production). 

 PTU.Start Number of the first PTU this element refers to. The first PTU of a day has number 1. 

 PTU.Duration The number of the PTUs this element represents. Optional, default value is 1. 

 PTU.Price The price offered or accepted for supplying the indicated amount of flexibility in this 
PTU. 

Table 13 - Flexibility Order message used by DSO to Aggregators 
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In case the DSO accepts the offer, then a DR dispatch is performed to the selected energy assets under the 
Aggregator. The interfaces related to this latter action are described in the next section. 

7.3.5 Demand Response signal dispatch to energy assets 

After filtering, ranking and optimizing for explicit demand response and in case the DR offer is accepted by 
the DSO, the asset-specific flexibility request is broadcasted by WiseCOOP to WG IOP in the following form: 

 

 

The JSON body for explicit DR broadcasting (eiEvent) to assets should have the following format: 

{ 

   "eiEventDescriptor": { 

      "eventID": "1", 

      "createdDateTime": "2012-12-13T12:12:12" 

   }, 

   "eiEventSignals": { 

      "eiEventSignal": [ 

         { 

            "signalID": "17", 

            "startTime": "2012-12-13T12:00:00", 

            "activePeriod": "PT15M", 

            "eiTarget": { 

               "venID": "assetID", 

               "aggregatedPnode": "8" 

            } 

         }, 

         { 

            "signalID": "97", 

            "startTime": "2012-12-13T12:15:00", 

            "activePeriod": "PT15M", 

            "eiTarget": { 

               "venID": "12345", 

               "aggregatedPnode": "1.0" 

            } 

         }, 

         { 

            "signalID": "107", 

            "startTime": "2012-12-13T12:20:00", 

            "activePeriod": "PT15M", 

            "eiTarget": { 

               "venID": "assetID", 

               "aggregatedPnode": "-0.4" 

            } 

         } 

      ], 

      "numDataSources": "3" 
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   }, 

   "activePeriod": "PT45M", 

   "eiTarget": { 

      "venID": "assetID", 

      "aggregatedPnode": "8.6" 

   } 

} 

 

The above JSON object is broadcasted as a list of objects, each one is dedicated to a specific asset, defined by the unique asset key (venID) and 
represents an explicit DR request to the specific asset (building). 

 

The following message is the respone (EiEventResponse) of each asset to the DR triggering depending on whether the asset opts in or out of the 
DR trigger: 

{ 

       "eventID": "123", 

       "venID": "assetID", 

       "signalIDs": ["17", "97", "107"], 

       "optType": "true" OR "false" 

} 

While the following JSON object is the reported result – actual flexibility delivered (EiEventReport) of the explicit DR signal: 

{ 

    "reportID" : "1233", 

    "reportName" : "reportName1", 

    "eventID" : "123", 

    "venID" : "assetID", 

    "aggregatedPnode" : "8.6", 

    "reportedSignals" : [ 

             { 

                  "signalID" : "17", 

                  "aggregatedPnode" : "8" 

             }, 

             { 

                  "signalID" : "97", 

                  "aggregatedPnode" : "1.0" 

             }, 

             { 

                  "signalID" : "107", 

                  "aggregatedPnode" : "-0.4" 

             }] 

} 

The message structure and attributes above are partly based on the OpenADR message structure [23] to 
foster interoperability with other OpenADR compliant tools. 

The role of the WiseGRID explicit demand response framework is to trigger DR strategies for 
consumers/prosumers and receive the results of participation in DR campaigns.  

Events are generated by WiseGRID explicit DR optimization framework and sent to the VEN (WiseCORP). If a 
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response is required, the VEN acknowledges its opt-in or out-out disposition by responding with an 
EiEventResponse element.  

EiEvent elements describe individual events, signal values, and time periods that apply to signals. Each eiEvent 
has an eventDescriptor element containing event information: event id and created timestamp. 

The event signals that are applied over the entire active period are defined in an EiEventSignals element. This 
super-element contains one or more elements, each with a sequence of durations, the sum of which must 
equal the full duration of the active period. The eiTarget contains the value of the signal (DR flexibility 
requested) and the unique asset ID. 

An EiEventResponse element contains the event id corresponding to the respective DR event and the VEN id 
which is the unique asset key. It also contains the list of signal ids requested (signalIDs). The optType may 
have a value of “true” or “false” to indicate the VENs disposition for a given event. 

Furthermore, the results from DR participation (actual flexibility delivered) are reported back via the 
associated service (WG IOP). EiEventReports are published to WG IOP in order to indicate the actual flexibility 
delivered. The typical JSON body for reporting DR participation is defined above (EiEventReport). 

Related to security, TLS must be used to encrypt all traffic regardless of the authentication method used. The 
client must always validate the server’s TLS certificate given during the handshake. The entity initiating the 
request (the client) must have an X.509 certificate that is validated by the server during the TLS handshake. 
If no client certificate is supplied, or if the certificate is not valid (e.g., it is not signed by a trusted CA, or it is 
expired) the server must terminate the connection during the TLS handshake. If the certificate appears valid 
during the TLS handshake, the connection is established and the HTTP request proceeds. Once the server 
receives the HTTP request, it must perform authentication, given the credentials in the client certificate. 
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8 CONCLUSIONS 

This document provides the design and specification of WiseGRID DR Optimization framework, as the back-
end application running to support the Aggregator and Retailer business roles. In essence, this deliverable 
designs and provides specifications of flexibility models as well as means to exploit such flexibility models 
through an optimization framework; such a framework facilitates demand response strategies implementa-
tion. To this end, demand modelling approaches along with optimization of loads that take into account the 
demand modification potential of assets in order to participate in alternative demand response strategies 
with the aim of both network operation and market participation optimization are described. 

The following demand flexibility models developed within the context of WiseGRID project were presented: 

1. Comfort-based demand flexibility model reflecting real-time demand flexibility as a function of mul-
tiple parameters, such as time, device operational characteristics, environmental context/ conditions 
and individual/group occupant comfort preferences. Innovative and well proven machine-learning 
techniques are utilized to improve the accuracy of DER models by taking into account information 
related to events from user behaviour and respective comfort preferences. 

2. In lack of low-level context information, high-level Price-based demand elasticity models are devel-
oped, reflecting temporal real-time demand elasticity as a function of multiple contextual (environ-
mental) and market (price and incentive schemes) variables. 

3. Electric Vehicle demand flexibility model were developed that reveal the energy needs of batteries 
and EVs along with their state of charge and discharging rates for appropriate flexibility provision. 

The WiseGRID DR Optimization framework is also presented for two business cases; namely, explicit and 
implicit demand response strategies. In this way, the framework provides the supporting tools to Retailers 
(WiseCOOP) for implicit demand response strategies during which the Retailer can balance its own portfolio 
by broadcasting day-ahead dynamic tariffs to its participating assets (buildings, charging stations, etc.). More-
over, the framework enables Aggregators to exploit the full potential flexibility of their assets (WiseCOOP). 
Through WiseCORP, facility/building managers can participate in DR campaigns by automatically adapting 
setpoints for the devices of buildings in a human-centric manner, offering demand flexibility for congestion 
management and peak-load shedding, and are consequently compensated for it by the DSO. 

The services provided by the WiseGRID DR Optimization framework meet all the applicable requirements 
that are outlined in Chapter 3. The following table gives an overview of the applicable requirements and 
breaks them down to four groups that reflect: a) Data Management, b) Demand Response Strategies accom-
modation, c) Demand Modelling including comfort/elasticity profiling and DER modelling, and d) general re-
quirements.  

In summary, the WiseGRID DR optimization framework integrates all the relevant components and allows 
communication amongst them by a data management layer in each tool; internal RabbitMQ implementations 
represent the data management layer in WiseCOOP and WiseCORP, while the WG IOP aids the communica-
tion between different platforms. Through these implementations, real-time environmental and operational 
data can be retrieved where available, as well as energy consumption monitoring of assets, meeting in this 
way the Data Management requirements.  

Being able to monitor and store real-time data facilitates the extraction of accurate comfort and elasticity 
profiling and DER models for the respective assets (devices, batteries, etc.). Hence, the requirements that 
are classified in Demand Modelling group are also taken into full consideration.  

Last but not least, the WiseGRID DR optimization framework, incorporates information from data monitoring 
and demand modelling, and sets forth the way for implementing novel Demand Response Strategies; accom-
modating in this way the requirements described in the following table. 

In the following list it is possible to see the requirements needed for the well-functioning of the DR frame-
work. 
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Require-
ment ID 

Description Classification Priority 

DRF_003 The user needs to be able to configure the electricity tariff, or connect it 
with some Public API in case of real-time pricing 

Data Management 
✓ 

 

DRF_004 Energy Storage should be used in order to provide flexibility to the DR Demand Model-
ling ✓ 

DRF_005 The system should be compatible with others at the project in order to be 
able to share information 

Data Management ✓ 

DRF_006 Different types of demand flexibility profiles will be defined  as part of the 
consumer-centric DR profiling addressing the objectives of the project 

Demand Model-
ling 

✓ 

DRF_007 The comfort-based demand flexibility profiles should be designed taking 
into account remote monitoring (and controllable) of building loads exam-
ined in the project 

Data Management ✓ 

DRF_008 As part of comfort-based demand flexibility, we should address comfort 
profiles associated with the operation of energy-hungry HVAC devices 

Data Management ✓ 

DRF_009 Towards the extraction of visual comfort profiles, information about lumi-
nance levels (luminance sensors) under different operational conditions( 
lighting device status) is required 

Data Management ✓ 

DRF_010 Towards the extraction of thermal comfort profiles, information about ther-
mal context (temperature & humidity sensors) under different operational 
conditions (HVAC device status) is required 

Data Management ✓ 

DRF_011 Towards the extraction of HVAC demand flexibility profiles, information 
about operational conditions (HVAC device status) and HVAC energy con-
sumption is required 

Data Management ✓ 

DRF_012 Towards the extraction of Lighting demand flexibility profiles, information 
about operational conditions (Lighting device status) and  energy consump-
tion is required 

Data Management ✓ 

DRF_014 The extraction of comfort-based flexibility profiles should be based on accu-
rate DER models 

Demand Model-
ling 

✓ 

DRF_015 Towards the extraction of comfort-based demand flexibility profiles, infor-
mation about energy cost (retailer tariffs) is required 

Data Management ✓ 

DRF_016 Comfort-based demand flexibility profiles shall support the implementation 
of demand shifting strategies (P2H flexibility profiling extraction) 

Demand Response 
Strategies 

✓ 

DRF_017 Comfort-based flexibility profiles should ensure the minimum of occupants 
disturbance on building environment 

Demand Model-
ling 

✓ 

DRF_018 Comfort based Flexibility Profiles should be exploited towards the imple-
mentation of automated DR strategies 

Demand Response 
Strategies 

✓ 

DRF_019 Price based Flexibility Profiles should be defined, reflecting the enrolment 
of prosumers on price based DR scenarios 

Demand Model-
ling 

✓ 

DRF_020 High-level Demand Elasticity Profiles should be provided in lack of low level 
information (device level) information 

Demand Model-
ling 

✓ 

DRF_021 Towards the extraction of price based flexibility profiles, information about 
market prices (real-time hourly prices, day-ahead hourly prices, pricing 
schemes) is required 

Data Management ✓ 



 

 

 

 

 

D10.2 WiseGRID Flexibility-based DR Optimization Framework Specifications 107 

 

DRF_022 Towards the extraction of price based flexibility profiles, information about 
external weather conditions should be available 

Data Management ✓ 

DRF_023 Towards the extraction of price based flexibility profiles, information about 
individual consumer consumption is required 

Data Management ✓ 

DRF_025 A central data management unit should be responsible for capturing real-
time and historical information required for the extraction of the different 
profiling types 

Data Management ✓ 

DRF_026 Real-time information required for the extraction of (comfort-based, price 
based) Demand Flexibility profiles, should be available in real-time through 
an automated way 

Data Management ✓ 

DRF_027 The consumer-centric DR profiling is running as a standalone service calcu-
lating the amount of potential flexibility at each demand side end point 

Data Management ✓ 

DRF_028 An Advanced Flexibility Analysis component should be designed to provide 
analytics over demand flexibility providing assets 

Demand Model-
ling 

✓ 

DRF_029 The Advanced Flexibility Analysis should exploit the results from consumer- 
centric DR profiling engine 

Data Management ✓ 

DRF_030 Sample analytics over the streams of flexibility data (aggregation, filtering & 
clustering ) will be supported by the Advanced Flexibility Analysis  engine 

Data Management ✓ 

DRF_031 Input values (capacity, response capability, location, time ) will set the con-
figuration parameters for the analytics process 

Data Management ✓ 

DRF_032 Along with real-time analytics, short term forecasting of demand flexibility 
should be provided by the Advanced Flexibility Analysis engine 

Data Management ✓ 

DRF_033 The outcomes of Advanced Flexibility Analysis engine may be available for 
visualization or to a DSS for DR strategies implementation at consumers 
level 

Data Management ✓ 

DRF_034 An Optimization DSS component should be designed to enable the aggrega-
tion of multiple consumers to participate in DSM strategies 

Demand Response 
Strategies 

✓ 

DRF_035 The Optimization DSS component should be designed to allow for the selec-
tion of the appropriate aggregated demand side assets to participate in DR 
programs 

Demand Response 
Strategies 

✓ 

DRF_036 The Optimization DSS component should enable interacting with different 
grid and market stakeholders requesting demand flexibility for the business 
services 

Data Management ✓ 

DRF_037 The Optimization DSS component should take into account the different DR 
contracts towards the selection of customers to participate in the associ-
ated campaigns 

Data Management ✓ 

DRF_038 The Optimization DSS component should be designed to dispatch the DR 
signal to the different demand side end points 

Data Management ✓ 

DRF_039 The Optimization DSS component should be designed to dispatch the asso-
ciated DR signal by taking into account the DR Contract 

Data Management ✓ 

DRF_040 The Optimization DSS component should  estimate the  impact of DR strate-
gies to the active consumers, by taking into account the outcomes from 
consumer-centric DR profiling engine 

Data Management ✓ 

GEN_005 WiseGRID must promote a 'level playing field' which does not discriminate 
between competitors (e.g., suppliers, aggregators) as well as flexibility solu-
tions (e.g., storage, DR, EVs) 

General Require-
ments 

✓ 
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GEN_006 WiseGRID must make use of existing standards or standards under develop-
ment to provide easier access to market and the dissemination of the re-
sulting solutions worldwide 

Data Management ✓ 

Table 14 – Fulfilment of Requirements 

Following the development of the different demand flexibility services, the next step is the integration and 
lab-testing of these in Deliverable 14.2” WiseGRID integrated ecosystem Lab testing”. 
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9.2 ACRONYMS 
 

Table 15 – List of Acronyms 

  

Acronyms List 

BMS Building Management System 

BRP Balancing Responsible Party 

CP Consortium Plenary 

DER Distributed Energy Resource 

DM Dissemination Manager 

DoW Description of Work 

DR Demand Response 

DSM Demand Side Management 

DSO Distribution System Operator 

EM Exploitation Manager 

EV Electric Vehicle 

HVAC Heating, Ventilation and Air Conditioning 

IPR Intellectual Property Rights 

OBIS Object Identification System 

PC Project Coordinator 

PDF Probability Density Function 

PSC Project Steering Committee 

PTU Power Transfer Unit 

PPR Project Periodic Report 

QM Quality Management 

QR Quarterly Report 

RM Risk Management 

SLA Service Level Agreement 

SVN Subversion 

TLS Transport Layer Security 

TM Technological Manager 

VEN Virtual End Node 
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10 ANNEX A  
 

10.1 DEVICE AND SENSOR CONFIGURATION PARAMETERS 
 

Wise Grid configuration parameters of WiseCORP devices 

 

Below are examples of the meta-data that would be stored in the smart device or WiseCORP. 
 

The following is a general configuration file that includes information on all devices installed in premises .  

After the following unified JSON body (in which some parts are abstractly defined), we specifically define the 
template (configuration JSON body) for each device and combo sensors (luminance+temperature). 

 

*********************************************************************************************************** 

JSON Config File 

{ 

  "WiseCORPConfig": { 

    "Controllers": { 

      "SHIC": [{ 

        "asset id": "String", 

        "shic id": "String", 

        "shic obis code": "String", 

        "metadata": { "type": "\"String\"" }, 

        "control_type": "SG-ready / serial / modbus / IR", 

        "submeter": { 

          "present": "true/false", 

          "Splug or SLAM obis code": "String", 

          "settings": { 

            "LP_reporting_interval": "integer", 

            "LP_resolution": "integer" 

          }, 

          "temp_sensor": { 

            "temp obis code": "string", 

            "offset": "float" 

          } 

        } 

      },...], 

      "Smartplug": [{ 
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        "asset id": "String", 

        "splug id": "String", 

        "splug obis code": "String", 

        "nominal_power": "watts, integer", 

        "submeter": { 

          "settings": { 

            "LP_reporting_interval": "integer", 

            "LP_resolution": "integer" 

          } 

        } 

      },...], 

      "LED_lamp": [{ 

        "asset id": "String", 

        "led id": "String", 

        "led obis code": "String", 

        "nominal_power": "”watts, integer”" 

      } 

    },...], 

    "Sensors": { 

      "lux_sensor": [{ 

        "asset id": "String", 

        "lux id": "string", 

        "lux obis code": "String", 

        "lux_reporting_interval": "integer", 

        "lux_threshold": "”lux, float”", 

        "temp_sensor": { 

          "temp obis code": "string", 

          "offset": "float" 

        },...] 

      } 

    } 

  } 

} 

 

EACH TEMPLATE SEPARATELY 

 

SHIC template 
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Database: ASSET01 

Collection: ???  

Document: SHIC_ID? 

{ 

 “smx id”: ASSET01, 

  “shic id”:SHIC01, 

“shic obis code”:  "0-1-160-7-0-1"  

 “type”: “SHIC”,  

 “appliance metadata”:  

 { 

  “type”: <HVAC / AC> 

 “category”:<inverter/non inverter, ID> 

“nominal power”:<watts, integer> 

“cooling capacity”:<watts, integer> 

“heating capacity”:<watts, integer> 

“cooling efficiency”:<percentage, float> 

“heating efficiency”:<percentage, float> 

“min setpoint”:<temperature value, float> 

“max setpoint”:<temperature value, float> 

}, 

“control type”: <SG-ready / serial / modbus / IR>, 

“submeter”: <true/false>, 

“splug obis code”: “0-1-165-7-0-1”, 

“submeter settings”: { 

“LP reporting interval”: 60 sec, 

“LP resolution”: 60 sec, 

}, 

“temp obis code”: "0-1-96-9-0-1" or “null” 

“temp sensor offset”: <float> 

} 

 

#Comments: The load threshold can be set to get a specific notification on specific load changes. 

 
 

Lux sensor template 

 

{ 
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 “asset id”: “ASSET01”, 

 “lux id”: “LUX01”, 

 “lux obis code”: “0-1-151-7-0-1”, 

“type”: “lux sensor”,  

“lux reporting interval”: <60 / 120 / xyz sec>, 

“lux threshold”:<lux, float> 

“temp obis id”: "0-1-96-9-0-1" or “null”, 

“temp sensor offset”: <float> 

} 

 

#Comments: The lux threshold can be set to get a specific notification on when the light changes. Please note 
that the battery powered lux meter will only report once per minute. If a specific test scenario calls for more 
frequent reports, the interval can be further shortened (at the obvious cost of shorter battery life time, but 
for test scenarios this might still be desired). 

 
 

Smartplug template 

{ 

 “asset id”: “ASSET01”, 

 “splug id”: “SPLUG01”, 

 “splug obis code”: “0-1-165-7-0-1”, 

“type”: “smartplug”,  

 “nominal power”:<watts, integer> 

“submeter settings”: { 

“LP reporting interval”: 60 sec, 

“LP resolution”: 60 sec, 

} 

} 

 
 

#Comments: The load threshold can be set to get a specific notification on specific load changes. 

 

LED lamp template 

{ 

 “asset id”: “ASSET01”, 

“led id”: “LED01” 

“led obis code”: "0-1-163-7-0-1" 
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“type”: “LED_lamp”,  

 “nominal power””:<watts, integer> 

} 

 
 

SLAM template 

{ 

 “asset id”: “ASSET01”, 

“slam id”: “SLAM01” 

“slam obis code”: "0-1-165-7-0-1" 

“type”: “smartmeter”, 

“nominal power”:<watts, integer> 

“submeter settings”: { 

“LP reporting interval”: 60 sec, 

“LP resolution”: 60 sec, 

}  

} 

 


