

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 1

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the Commission); RE: Restricted to a
group defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium (including the
Commission).

Title: Document Version:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 1.0

Project Number: Project Acronym: Project Title:

H2020-731205 WiseGRID Wide scale demonstration of Integrated Solutions for Euro-
pean SmartGRID

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M21 (July 2018) M21 (July 2018) RD-PU

Responsible: Organisation: Contributing WP:

Paul Lacatus CRE WP5

Authors (organisation):

Paul Lacatus (CRE), Catalin Chimirel (CRE), Mihai Sanduleac(CRE), Álvaro Nofuentes (ETRA), Alberto
Zambrano(ETRA), Giuseppa Caruso (ENG), Leandro Lombardo(ENG), Stefan Meir(VS)

Abstract:

In the context of WiseGRID WP5 this document will define the architecture of a cloud based Big Data platform and
small scale demonstrator.

Specifications of the WiseGRID Big Data Cloud-based infrastructure towards enabling: (i) Data Integration from a va-
riety of heterogeneous data sources, (ii) Storage and Processing of huge data volumes in a highly efficient and effec-
tive manner, (iii) adaptation of Service-Oriented-Architectures (SOA) towards enhancing flexibility, scalability, re-
usability, loose coupling, integration of a variety of functionalities, and (iv) Interoperability and Interconnection with
a wide range of applications. Configuration and integration of the WiseGRID Big Data infrastructure with the WG IOP
and the individual WiseGRID components.

Keywords:

Big Data, Big Data platforms, data mining, data analytics, JSON, NoSQL, data storing, data processing,

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 2

Revision History

V1.0 30.07.2018 Version for submission Paul Lacatus (CRE)

Revision Date Description Author (Organisation)

V0.1 1.06.2018 New document Paul Lacatus (CRE)

V0.2 27.06.2018 ToC refinement Paul Lacatus (CRE)

V0.3 14.07.2018 Content added Paul Lacatus (CRE)

V0.4 15.07.2018 Peer Review version without contributions Paul Lacatus (CRE)

V0.5 25.07.2018 Review by ENG Leandro Lombardo and Cata-
lin Chimirel

Paul Lacatus (CRE)

V0.6 27.07.2018 Release candidate RC1 Paul Lacatus(CRE)

V0.7 27.07.2018 Technical details on sections 9.1.3, 9.1.4,
9.1.5, 9.1.7

Alberto Zambrano (ETRA)

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 3

INDEX

1 INTRODUCTION .. 11

1.1 Purpose of the document ..11

1.2 Scope of the document ..11

1.3 Structure of the document ..11

2 BIG DATA PLATFORM FOR WISEGRID PROJECT .. 12

2.1 BIG DATA DEFINITIONS ..12

2.2 BIG DATA PLATFORMS FOR WISEGRID PROJECT DEFINED BY D5.115

3 BIG DATA ONLINE PLATFORM ... 16

3.1 BIG DATA MONGODB CLUSTER STRUCTURE ...16

3.2 BIG DATA MONGODB DEMONSTRATOR STRUCTURE ..17

4 BIG DATA OFFLINE PLATFORM .. 18

4.1 BIG DATA HADOOP CLUSTER STRUCTURE...19

4.2 BIG DATA HADOOP ARCHITECTURE ADAPTED FOR WISEGRID PROJECT DEMONSTARTOR20

5 SINGLE BOARD COMPUTERS FOR WISEGRID DEMONSTRATOR 22

5.1 WHAT ARE SINGLE BOARD COMPUTERS ..22

5.2 SINGLE BOARD COMPUTERS ANALYZED FOR WISEGRID DEMONSTRATOR22

5.2.1 Raspberry Pi 3B+ .. 23

5.2.2 Odroid XU4 .. 24

5.2.3 Odroid C2 ... 27

6 INSTALLATION OF THE MONGODB CLUSTER .. 31

6.1 PHYSICAL INSTALLATION OF THE Odroid C2 SBC FOR RACK MOUNTING31

6.1.1 3D PRINTED SUPORTS FOR ODROID C2 ... 32

6.1.2 POWER SUPPLY OF THE ODROID C2 SBCs ... 35

6.1.3 VENTILATION ... 36

6.2 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM ...36

6.2.1 Defining the IP address system ... 36

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 4

6.2.2 Preparation of the nodes for cluster configuration... 38

6.3 INSTALLATION OF MANAGEMENT SOFTWARE: WEBMIN ..40

6.4 INSTALLATION OF THE MONGODB ENTERPRISE ..42

6.5 INSTALLATION OF MONGODB CLUSTER ...44

6.5.1 Setting of configuration servers .. 45

6.5.2 Activation of config servers ... 47

6.5.3 Setting of replicated shards ... 49

6.5.4 Activation of replica shards servers ... 54

6.5.5 Configuration and activation of arbiter instances ... 59

6.5.6 Configuration and activation of application routers ... 60

6.5.7 Final settings and online connection ... 65

7 INSTALLATION OF THE APACHE HADOOP CLUSTER .. 66

7.1 PHYSICAL INSTALLATION OF THE Odroid XU4 SBC FOR RACK MOUNTING66

7.1.1 3D PRINTED SUPORTS FOR ODROID XU4 .. 66

7.1.2 POWER SUPPLY OF THE ODROID XU4 SBCs ... 68

7.1.3 VENTILATION ... 69

7.2 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM ...69

7.2.1 Defining the IP address system ... 69

7.2.2 Preparation of the nodes for cluster configuration... 70

7.3 INSTALLATION OF MANAGEMENT SOFTWARE, DISTRIBUTED cli SOFTWARE73

7.4 INSTALLATION OF THE HADOOP SOFTWARE ..74

7.4.1 Installing Java ... 74

7.4.2 Preparing the user, groups and rights for installing Hadoop 74

7.4.3 Installing and deploying Hadoop software .. 78

7.5 ACTIVATION OF HADOOP CLUSTER ..85

7.6 INSTALLATION OF APACHE SPARK SOFTWARE ..86

7.6.1 Prerequisites to SPARK installation ... 86

7.6.2 Installation of Apache SPARK software ... 87

7.6.3 Deployment of SPARK software and settings on all slaves ... 88

7.6.4 Activation of SPARK software .. 89

8 APACHE HADOOP CONNECTION WITH THE MONGODB CONECTOR 91

8.1 Installation of Hadoop MongoDB connector ...94

9 CONNECTION OF APPLICATIONS TO MONGODB CLUSTER .. 95

9.1 Application INTERACTIONS from WiseGRID applications to the Big Data Platform95

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 5

9.1.1 Databases created in lab testing phase ... 95

9.1.2 Big data interactions from WG IOP application ... 96

9.1.3 Big data interactions from WG Cockpit application .. 97

9.1.4 Big data interactions from WiseCORP application ... 103

9.1.5 Big data interactions from WiseCOOP application ... 107

9.1.6 Big data interactions from WiseHOME application ... 111

9.1.7 Big data interactions from WG EVP application .. 113

9.1.8 Big data interactions from WG FastV2G application ... 117

9.1.9 Big data interactions from WG Staas/VPP application .. 117

9.1.10 Big data interactions from WG RESCO application .. 120

10 CONCLUSIONS AND NEXT STEPS .. 122

10.1 Conclusions ... 122

10.2 Next steps to be implemented ... 123

11 REFERENCES AND ACRONYMS ... 124

11.1 References .. 124

11.2 Acronyms .. 126

LIST OF FIGURES

Figure 1 – Big Data 5V [2] .. 12

Figure 2– BigData Architecture overview .. 14

Figure 3 – Sharding diagram [1] .. 16

Figure 4 – Replication diagram .. 17

Figure 5 – Network cluster structure... 17

Figure 6 – Hadoop cluster structure [3] .. 20

Figure 7 – Hadoop -Spark minimal structure .. 21

Figure 8 – Raspberry Pi Model 3B+ ... 23

Figure 9 – Odroid XU4 [9] ... 25

Figure 10 – Odroid XU4 Block Diagram [9] ... 27

Figure 11 – Odroid C2 [10] .. 28

Figure 12 – Odroid C2 block diagram [10] .. 30

Figure 13 – DIN rail .. 32

Figure 14 – 19" rack mounts for DIN Rail .. 32

Figure 15 – Odroid C2 DIN mount view 1 .. 33

Figure 16 –Odroid C2 DIN mount view 2 ... 33

Figure 17 – Odroid C2 DIN Mount view 3 .. 34

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 6

Figure 18 – Minimal MongoDB cluster in lab testing .. 34

Figure 19 – Wago 221 power rail for connecting Odroid C2 ... 35

Figure 20 – Webmin dashboard on a cluster node ... 41

Figure 21 – Webmin screen for automatic updates .. 42

Figure 22 – Connection to the MongoDB application router trough MongoDB Compass.................. 64

Figure 23 – Odroid XU4 Din Rail Support view 1 ... 66

Figure 24 – Odroid XU4 support view 2 .. 67

Figure 25 – Odroid XU4 DIN rail support view 3.. 67

Figure 26 – Minimal Odroid XU4 Hadoop cluster .. 68

Figure 27 – Hadoop MongoDB batch aggregation [25] ... 91

Figure 28 – MongoDB Hadoop Data Warehouse [25] ... 92

Figure 29 – Hadoop ETL from MongoDB [25] .. 93

Figure 30 – Hadoop ETL to MongoDB [25] .. 93

Figure 31– Databases created in lab testing phase ... 95

Figure 32 – WG IOP Architecture .. 97

Figure 33 - WiseGRID Cockpit .. 98

Figure 34 – WG Cockpit interface with Big Data platform .. 99

Figure 35 – WG Cockpit data mining ... 99

Figure 36 – Collections inside the WG_Cockpit database ... 100

Figure 37 – Documents stored in the wgcockpit_config collection ... 101

Figure 38 – WiseCORP ... 103

Figure 39 – WiseCORP interface with Big Data platform .. 104

Figure 40 -– WiseCORP data mining .. 105

Figure 41 – Details of the WG_Corp database .. 106

Figure 42 – WiseCOOP ... 108

Figure 43 – WiseCOOP Big Data Platform interface .. 108

Figure 44 – WiseCOOP Big Data mining .. 109

Figure 45 – Details of WiseCoop Database.. 110

Figure 46 – WiseHOME Interaction Diagram .. 112

Figure 47 – Wise EVP ... 113

Figure 48 – WiseEVP interface with Big Data platform ... 114

Figure 49 – WiseEVP Big Data mining .. 115

Figure 50 – WiseEVP database .. 116

Figure 51 – Sketch of data flow between WG StaaS/VPP components and neighbouring WG tools118

Figure 52 – Object Mapping between Node and MongoDB managed via Mongoose 121

Figure 53 – WG RESCO Tool interface with Big Data Platform .. 122

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 7

LIST OF TABLES

Table 1 – Odroid XU4 specification ... 26

Table 2 – Odroid C2 specifications .. 30

Table 3 – IPs for sharded replica set .. 37

Table 4 – IP for management and application routers nodes ... 37

Table 5 – Config servers IP and names .. 45

Table 6 – Replica shards servers .. 49

Table 7 – Names and IP for Hadoop Spark cluster .. 70

Table 8 –Collections in WGcockpit data base ... 99

Table 9 – Wisecorp database collections .. 105

Table 10 – Wisecoop Database collections ... 110

Table 11 – Collections in Wise EVP database .. 115

Table 12 – List of WG StaaS/VPP monitoring data .. 119

Table 13 – Deliverable objectives .. 123

Table 14 – List of Acronyms ... 126

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 8

EXECUTIVE SUMMARY

The executive summary shortly summarizes the contents of the main document chapter by chapter.

Chapter 1 INTRODUCTION

Introductive chapter presenting the scope and the structure of the document. The main part of the
document is focused on installation of demonstrator for lab testing in order to become an extensive
manual for deploying similar platforms on the pilot sites.

Chapter 2 BIG DATA PLATFORM FOR WISEGRID PROJECT

The chapter is summarizing the basic notions of Big Data, detailed in D5.1 [1] in the context of Wise-

GRID project. The Big data platform for WiseGRID project has two main components.

 An online platform based on a computer cluster that is providing online Big Data services as
long term data storage and retrieving in separate databases for each application

 An offline platform based on a separate computer cluster that is providing the offline
services of data processing. This cluster is based by Apache Hadoop framework and will
provide the remote processing of applications based on Apache Spark operators.

Chapter 3 BIG DATA ONLINE PLATFORM

The chapter define general notions of MongoDB computer cluster detailed in D5.1 [1] focusing on
sharding and replications mechanisms and defines the minimal structure used by the demonstrator for
WiseGRID project.

Chapter 4 BIG DATA OFFLINE PLATFORM

The chapter define general notions of Hadoop Spark computer cluster detailed in D5.1 [1] focusing
on defining the minimal structure used by the demonstrator for WiseGRID project.

Chapter 5 SINGLE BOARD COMPUTERS FOR WISEGRID DEMONSTRATOR

The chapter is analysing the technical specifications of three types of single board computers in order
to decide which one is appropriate to be used in the two computer cluster that compose the demonstrator
for lab testing in WiseGRID project.

The three types are:

 Raspberry pi model 3B+, the latest and the most powerful single board computer from
Raspberry pi foundation

 Odroid XU4 the most powerful single board computer on ARM processor produced by the

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 9

Korean company Hardkernel.

 Odroid C2 the single board computer produced by Hardkernel that has full official support
for Linux 64-bit. Using Linux 64-bit distribution is needed for full performance MongoDB
installation.

The demonstrator is using Odroid C2 for MongoDB computer cluster and Odroid XU4 for Hadoop-
Spark cluster.

Chapter 6 INSTALLATION OF THE MONGODB CLUSTER

The chapter is a complete and extensive installation manual of a MongoDB cluster that is using
sharding and replication having as an example the eleven nodes cluster installed for lab testing purposed as
WiseGRID WP5 demonstrator. The chapter targets to be used for installation and deploying the Big Data
online platform in the pilot sites of the WiseGRID project. The described phases of installation are:

 PHYSICAL INSTALLATION OF THE Odroid C2 SBC FOR RACK MOUNTING
o 3D PRINTED SUPORTS FOR ODROID C2
o POWER SUPPLY OF THE ODROID C2 SBCs
o VENTILATION

 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM
o Defining the IP address system
o Preparation of the nodes for cluster configuration

 INSTALLATION OF MANAGEMENT SOFTWARE: WEBMIN

 INSTALLATION OF THE MONGODB ENTERPRISE

 INSTALLATION OF MONGODB CLUSTER
o Setting of configuration servers
o Activation of config servers
o Setting of replicated shards
o Activation of replica shards servers
o Configuration and activation of arbiter instances
o Configuration and activation of application routers
o Final settings and online connection

Chapter 7 INSTALLATION OF THE APACHE HADOOP CLUSTER

The chapter is a complete and extensive installation manual of a Hadoop Spark cluster having as an
example the five nodes cluster installed for lab testing purposed as WiseGRID WP5 demonstrator. The
chapter targets to be used for installation and deploying the Big Data offline platform in the pilot sites of
the WiseGRID project. There are described phases of installation as:

 PHYSICAL INSTALLATION OF THE Odroid XU4 SBC FOR RACK MOUNTING
o 3D PRINTED SUPORTS FOR ODROID XU4
o POWER SUPPLY OF THE ODROID XU4 SBCs
o VENTILATION

 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM
o Defining the IP address system
o Preparation of the nodes for cluster configuration

 INSTALLATION OF MANAGEMENT SOFTWARE, DISTRIBUTED cli SOFTWARE

 INSTALLATION OF THE HADOOP SOFTWARE

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 10

o Installing Java
o Preparing the user, groups and rights for installing Hadoop
o Installing and deploying Hadoop software

 ACTIVATION OF HADOOP CLUSTER

 INSTALLATION OF APACHE SPARK SOFTWARE
o Prerequisites to SPARK installation
o Installation of Apache SPARK software
o Deployment of SPARK software and settings on all slaves
o Activation of SPARK software

Chapter 8 APACHE HADOOP CONNECTION WITH THE MONGODB CONECTOR

The chapter describes the installation of Hadoop java plugin used for connecting to MongoDB:

” MongoDB connector for Hadoop”. This plugin provides Hadoop to use MongoDB as input source for
Hadoop and also an output destination.

Chapter 9 CONNECTION OF APPLICATIONS TO MONGODB CLUSTER

The chapter represent the contribution of the developers for WiseGRID applications that are
interacting with the Big Data platform and describes each such interaction.

Chapter 10 CONCLUSIONS AND NEXT STEPS

This chapter draws some insight from the development of the WiseGRID WP5 demonstrator and
establishes the guiding lines for deployment of the Big Data platform in the pilot sites.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 11

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

In the context of WiseGRID’s WP5, this document will define the architecture of a cloud based Big
Data demonstrator that will be used by WiseGRID applications.

Specifications of the WiseGRID Big Data Cloud-based infrastructure towards enabling: (i) Data Inte-
gration from a variety of heterogeneous data sources, (ii) Storage and Processing of huge data volumes in a
highly efficient and effective manner, (iii) adaptation of Service-Oriented-Architectures (SOA) towards en-
hancing flexibility, scalability, reusability, loose coupling, integration of a variety of functionalities, and (iv)
Interoperability and Interconnection with a wide range of applications. The purpose is also to define the
configuration and integration of the WiseGRID Big Data infrastructure with the WG IOP and the individual
WiseGRID components.

1.2 SCOPE OF THE DOCUMENT

This document will focus on the testing and refinement of the architecture for a Big Data cloud-
based platform to suit the requirements of the WiseGRID applications.

1.3 STRUCTURE OF THE DOCUMENT

The document will use defined general concepts and notions about Big Data platforms from D5.1 [1]
and describe a demonstrator for this purpose and the lab testing and refinement phase.

The MongoDB a leading open source NoSQL database that has been proposed to be used for
implementing the Big Data platform cluster for WiseGRID project in D5.1 is used in a computer cluster
demonstrator described in chapter 3 BIG DATA ONLINE PLATFORM and detailed in chapter 6 INSTALLATION
OF THE MONGODB CLUSTER.

The interface between the applications of WiseGRID project and the Big Data platform will be direct
from the applications routers dedicated to each application in chapter 9 CONNECTION OF APPLICATIONS
TO MONGODB CLUSTER.

The Data mining and Data analytics cluster implementation in order to be used in WiseGRID project
in appropriate applications is described in chapter 4 BIG DATA OFFLINE PLATFORM and detailed in chapter
7 INSTALLATION OF THE APACHE HADOOP CLUSTER

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 12

2 BIG DATA PLATFORM FOR WISEGRID PROJECT

2.1 BIG DATA DEFINITIONS

Big Data is a concept that emerges early in 1990 due to the continuously increases in the amount of
data produced in all human activities that has to be stored, managed and processed. Big Data is in fact your
data, every data. It is information owned by you, by your company, obtained and processed through new
techniques in order to produce value in the best way possible.

Figure 1 – Big Data 5V [2]

 Volume refers to the vast amounts of data generated every second. Just think of all the
emails, twitter messages, photos, video clips, sensor data etc. we produce and share every
second. We are not talking Terabytes but Zettabytes or Brontobytes. On Facebook alone, we
send 10 billion messages per day, click the "like' button 4.5 billion times and upload 350
million new pictures each and every day. If we take all the data generated in the world
between the beginning of time and 2008, the same amount of data will soon be generated
every minute! This increasingly makes data sets too large to store and analyse using
traditional database technology. With big data technology we can now store and use these
data sets with the help of distributed systems, where parts of the data are stored in different
locations and brought together by software. [2]

 Velocity refers to the speed at which new data is generated and the speed at which data
moves around. Just think of social media messages going viral in seconds, the speed at which
credit card transactions are checked for fraudulent activities, or the milliseconds it takes
trading systems to analyse social media networks to pick up signals that trigger decisions to
buy or sell shares. Big data technology allows us now to analyse the data while it is being
generated, without ever putting it into databases. [2]

 Variety refers to the different types of data we can now use. In the past we focused on
structured data that neatly fits into tables or relational databases, such as financial data (e.g.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 13

sales by product or region). In fact, 80% of the world’s data is now unstructured, and
therefore can’t easily be put into tables (think of photos, video sequences or social media
updates). With big data technology we can now harness differed types of data (structured
and unstructured) including messages, social media conversations, photos, sensor data,
video or voice recordings and bring them together with more traditional, structured data. [2]

 Veracity refers to the messiness or trustworthiness of the data. With many forms of big data,
quality and accuracy are less controllable (just think of Twitter posts with hash tags,
abbreviations, typos and colloquial speech as well as the reliability and accuracy of content)
but big data and analytics technology now allows us to work with these types of data. The
volumes often make up for the lack of quality or accuracy. [2]

 Value Then there is another V to take into account when looking at Big Data: Value! It is all
well and good having access to big data but unless we can turn it into value it is useless. So,
you can safely argue that 'value' is the most important V of Big Data. It is important that
businesses make a business case for any attempt to collect and leverage big data. It is so easy
to fall into the buzz trap and embark on big data initiatives without a clear understanding of
costs and benefits. [2]

In WiseGRID project a potentially huge amount of data will be produced by different data sources:

• Various sensors,

• Weather data

• Energy smart meters,

• EVs charging stations,

• Energy production units,

• Dispatchable consumers

• Energy storage units,

• DSO data,

• WiseGRID applications

• Energy marked data

• Prosumers, other

All this data is produced, processed and consumed by different WiseGRID applications. It is needed for
the project to have an online platform ready to store the data in an easily scalable system. From the data
stored insights, trends, key performance indicators have to be extracted by a processing platform able to
increase the value of the data.

The interaction of the WiseGRID applications and big data platform were defined in the beginning and
refined by the evolution of applications development

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 14

Figure 2– BigData Architecture overview

Field level

Applications
high level

Smart meter
(SLAM or

meter+SMX)

PMU

WG-
Cockpit

Wise

CORP

Wise

COOP

Wise

HOME
data
Wise

EVP

Wise

FastV2G

WG

RESCO

WG

StaaS

/VPP

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Front-end
Data exchange

Secure IP-based communication

Big Data infrastructure (cloud based)

RTU

Clustered data, actor/business oriented
Clustered data, actor/business oriented

Front-
end,
if any

Access
Credentials >

Application Routers

Other data sources

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 15

The WiseGRID BigData platform is an online secured platform providing database as service. The platform
is based on two sections:

 for online services, a component for storing huge amount of data in a very flexible format coming
from heterogenous sources.

 for offline services, a component for mining and analysing the stored data to get new information,
trends, insights from stored data. This information obtained from stored data is getting value from
data

2.2 BIG DATA PLATFORMS FOR WISEGRID PROJECT DEFINED BY D5.1

The WiseGRID deliverable D5.1 [1] defines an infrastructure for implementing the Big Data services both
online and offline.

1. The first cluster is providing online Big Data services as long term data storage and retrieving in
separate databases for each application.

o A limited access database for each application containing data that are not under the
restrictions of GDPR. The access will be granted by a user/password pair contained in each
data base.

o A limited access database for each application that is storing personal data, under the
restrictions of GDPR. The access will be granted by user/password pair and also will be
limited by the network identity of the client by the firewall installed before the application
router

o Each application will access the database through a dedicated application router installed
on a separate cluster node.

 The first cluster is running MongoDB NoSQL database management system [1].

2. The second cluster hardware separated from the database cluster is providing the offline services.
This cluster is based by Apache Hadoop framework and will provide the remote processing of
applications based on Apache Spark operators.
The second cluster is connected to the MongoDB database cluster through the Hadoop MongoDB
connector. Each application will have a separate account for each WiseGRID application [1].

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 16

3 BIG DATA ONLINE PLATFORM

In time many types of databases were used for dealing with the data amount considered like Big Data
and the most appropriate database management systems were the NoSQL database management systems.

3.1 BIG DATA MONGODB CLUSTER STRUCTURE

Deliverable D5.1 [1] explains the selection of the MongoDB database management system for Wise-
GRID. The WiseGRID online Big data platform is based on a computer cluster that is easily horizontally scal-
able upon the requirements that for high availability is using the MongoDB mechanism of sharding and rep-
lication.

The Sharding mechanism allows the mongoDB databases to be distributed on more than one cluster
nodes allowing scalable cluster upon dimension of database requirements and scalability on the fly.

Figure 3 – Sharding diagram [1]

The sharding mechanism allows database extending based on requirements and also distributed
access from multiple Application routers /servers providing the required computing power from WiseGRID
applications.

The cluster reliability is provided by the replication mechanism. The replication allows that the
same data is located on separate nodes and in case of one node is faulty or offline due maintenance
procedures the data is still available

The replication mechanism allows that the data from on shard is replicated on two or more nodes
of the cluster. The switching from one database instance to another in case of unavailability on one node is
based by an “arbiter“ running on other nodes than the primary or secondary instances.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 17

Figure 4 – Replication diagram

3.2 BIG DATA MONGODB DEMONSTRATOR STRUCTURE

The Big Data demonstrator platform infrastructure has to be able to run a NoSQL database, acces-
sible from all the WiseGRID applications heterogeneous ecosystem, that will provide cloud based services
to the applications that will need to store long term data, retrieve the stored data, process and filter the
stored data.

 The MongoDB cluster will be built over multiple nodes that are separated computers connected in
a network on the clustering principles.

 To have a functional and cost-effective demonstrator that allows scalability the cluster use single
board computers as nodes. This document defines a minimal cluster to startup the development that can
be scaled on the fly based on further requirements.

Figure 5 – Network cluster structure

•Replica shards

•Arbiter

•Application
routers

•Config servers•Router Firewall

Local
network

LAN

SwitchEthernet

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 18

The minimal structure for the lab testing demonstrator is composed by:

 Router Firewall provide access from the applications running on external networks than the cluster
local network. Functions and services implemented on the router:

o Firewall to allow only legitimate access from the exterior and only to the nodes that need
to be accessed from outside of the local network.

o IP masquerading to allow nodes connected to the local network to access software
repositories, update servers

o DHCP for simple IP allocation for nodes in configuration process

 LAN switch providing ethernet access to all the cluster nodes for data interchange, process
communications.

 Config servers: cluster nodes that contain data about cluster structure, data sharding. A minimal
three configuration nodes are used in production clusters.

o Config 0 server
o Config 1 server
o Config 2 server

 Replica shards: cluster nodes that hold database data distributed and replicated on different
nodes. The minimal starting structure is of 6 nodes

o Replica shard 0 rs0
 Replica 0 node for shard 0
 Replica 1 node for shard 1

o Replica shard 1 rs1
 Replica 0 node for shard 0
 Replica 1 node for shard 1

o Replica shard 2 rs2
 Replica 0 node for shard 0
 Replica 1 node for shard 1

 Arbiter: separate cluster node running a database instance for each replica shard. Does not hold
database data but decides the replica role as “primary” or “secondary”

 Application router: cluster node running a special instance of database. Does not hold data but
process the request from external application and directs to the cluster nodes able to fulfil the
request. The number of application routers can be extended based on the load generated by the
applications. For the beginning only one application router can be used.

As indicated above a minimum of eleven cluster nodes has to be used for minimal structure.

4 BIG DATA OFFLINE PLATFORM

Big data is not only storing huge amount of data and retrieving it, but also processing stored data in or-
der to obtain new information, trends, and insights.

There are two types of processes:

• Data mining

• Data analytics

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 19

Data mining is a process to structure the raw data and formulate or recognise the various patterns in the
data through the mathematical and computational algorithms, data mining helps to generate new infor-
mation and unlock the various insights. The data is first placed into a data warehouse to do the required ex-
traction of data to produce meaningful relationships and patterns [1].

Data analytics is the art of exploring the facts from the data with specific to answer specific questions,
i.e. there is a test hypothesis framework for data analytics. The techniques used in analytics also are same
as used in business analytics & business intelligence [1].

Both processes are called as “offline processes” since there are no synchronism between producing and
storing data to processing data.

 The Big Data offline platform provides scalable computing power and distributed resources in order
to allow processing of huge amount of data already stored in the database system.

4.1 BIG DATA HADOOP CLUSTER STRUCTURE

The Big Data platform that will be specific designed for the WiseGRID project was defined like hav-
ing some specific requirements:

 It is based on Apache™ Hadoop® framework that provides distributed processing of large
data sets. Large datasets need for processing to be stored in distributed file systems that is
located across on multiple nodes of the cluster, processing has to be done by a system that
provides scheduling the jobs in distributed applications running on different nodes of the
cluster.

 It uses Apache Spark™ that is a fast and general engine for large-scale data processing.
Apache Spark is providing a set of tools for applications written in Java, Scala, Python and R
for building parallel processing apps.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 20

Figure 6 – Hadoop cluster structure [3]

4.2 BIG DATA HADOOP ARCHITECTURE ADAPTED FOR WISEGRID PROJECT DEMONSTARTOR

The offline processing of data stored in the Big Data platform is not expected to be extensive. Up to
this development phase there are not many applications that need offline Big Data processing. The Ha-
doop-Spark cluster is designed to be minimal in this phase of the project but can be scaled to the eventually
extent based on the evolution of development in the pilot sites.

The Hadoop-Spark cluster is connected on the same LAN as the MongoDB cluster behind the same
router.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 21

Figure 7 – Hadoop -Spark minimal structure

The cluster is composed of:

 One master node running the HDFS, Hadoop distributed file system, YARN distributed processing
framework and Map reduce. The same master is running also Apache Spark framework.

 Four slaves that are participating with their resources to the cluster.

•Slave nodes

•Master node•Router
Firewall

Local
network

LAN

SwitchEthernet

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 22

5 SINGLE BOARD COMPUTERS FOR WISEGRID DEMONSTRATOR

5.1 WHAT ARE SINGLE BOARD COMPUTERS
A single board computer is a complete computer build in on a single printed circuit board [4]. This

only one printed circuit board contains the processor, RAM memory, In/Out circuits, storage memory,
mostly as solid state non-volatile memory in the last period of time.

In the last years an explosive evolution of single board computer that will be named as SBC further
was started by launching the Raspberry Pi single board computer mainly for educational purposes. The first
version of Raspberry Pi SBC was launched in United Kingdom by Raspberry Pi Foundation to promote the
teaching of basic computer science in schools and in developing countries [5]. The first version reaches the
market in February 2012

One main development that helped the evolution of SBC computers was the proliferation of ARM
processors in many small mobile and handheld appliances.

ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family of reduced in-
struction set computing (RISC) architectures for computer processors, configured for various environments.
Arm Holdings develops the architecture and licenses it to other companies, who design their own products
that implement one of those architectures—including systems-on-chips (SoC) and systems-on-modules
(SoM) that incorporate memory, interfaces, radios, etc. It also designs cores that implement this instruction
set and licenses these designs to a number of companies that incorporate those core designs into their own
products. [6].

Since the first success of Raspberry Pi in 2012 many types of SBC computers were developed in the
family of Raspberry Pi and by many other developer companies that bring on the market SBC computers
with continuously increasing of computing power and performances.

With over 100 billion ARM processors produced as of 2017, ARM is the most widely used instruc-
tion set architecture in terms of quantity produced [6].

The Linux versions for ARM processors are mature and many distributions are developed and main-
tained continuously.

The Raspberry Pi Foundation that pushed the race of ARM single board computers published their
strategy for 2016-2019 as “Putting the power of digital making into the hands of people all over the
world” [7]

5.2 SINGLE BOARD COMPUTERS ANALYZED FOR WISEGRID DEMONSTRATOR

The use of single board computers for WiseGRID Bigdata architecture emerged from the beginning
of project development due to the possibility to build cost effective computer clusters with remarkable
computing power. The possibility of horizontal scaling of computer clusters with a good price performance
ratio and by using opensource software was an important criterion of implementing the cluster architec-
ture defined in deliverable D5.1

The first step in implementing the demonstrators was to define the main specifications to find
suitable single board computers for the two computer clusters: the MongoDB computer cluster and the
Apache Hadoop-Spark cluster.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 23

 The MongoDB computer cluster has a strict requirement to use a 64-bit version of Linux so the ar-
chitecture of the ARM processors that has to be used in MongoDB computer cluster nodes is an ARM V8
architecture.

5.2.1 Raspberry Pi 3B+
The first idea was to use last and the most powerful version of Raspberry Pi that emerged on the

market in 2018 as “Raspberry pi model 3B+.

The story of Raspberry Pi evolution is described in Strategy 2016-2018 document [7]

Raspberry Pi Foundation was established in 2008 as a UK-based charity with the purpose “to fur-
ther the advancement of education of adults and children, particularly in the field of computers, computer
science and related subjects”.

Through our trading subsidiary, (Raspberry Pi Trading Limited), we invent and sell low-cost, high-
performance computers that people use to learn, to solve problems, and have fun. Between launching our
first product in February 2012 and our fourth birthday in February 2016, we sold over eight million Rasp-
berry Pi computers and helped to establish a global community of digital makers and educators.

In October 2015 the Foundation merged with Code Club, a network of volunteer-led after-school
coding clubs for 9-11-year olds.

In November 2015 we launched the world’s first $5 computer, the Raspberry Pi Zero.

We use profits generated from our commercial activities to pursue our educational goals; we also
receive funding and in-kind support from generous partners and donors that share our mission [7].

The strongest point of the Raspberry Pi family is the large community of developers that are using
this family of SBCs in various applications.

The youngest member of the Raspberry pi family Raspberry Pi Model 3B+ is a single board comput-
er with a credit card form factor as in the following picture.

Figure 8 – Raspberry Pi Model 3B+

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 24

5.2.1.1 The specifications of Raspberry Pi Model 3B+

The technical specifications are:

 Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
 1GB LPDDR2 SDRAM
 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
 Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
 Extended 40-pin GPIO header
 Full-size HDMI
 4 USB 2.0 ports
 CSI camera port for connecting a Raspberry Pi camera
 DSI display port for connecting a Raspberry Pi touchscreen display
 4-pole stereo output and composite video port
 Micro SD port for loading your operating system and storing data
 5V/2.5A DC power input
 Power-over-Ethernet (PoE) support (requires separate PoE HAT)

The technical specifications of the Model 3B+ evolved from the previous versions but there are some draw-
backs for using Raspberry Pi Model 3B+ in our cluster.

From the specifications above some insights can be underlined:

 Even the line interface of Ethernet has been modified to a Gigabit one, the connection to the
processor of the Ethernet interface is done through the USB 2.0 and limited to the maximum throughput of
USB 3.0 to 300 Mbps.

 The processor is based on an ARM v8 architecture and is able to be used in a 64-bit OS. The
Raspberry Pi Foundations official Raspbian, Linux distribution based on Debian is still a 32-bit OS. Asking
Eben Upton for: “Would we release a version of our operating environment that was built on top of 64-bit
ARM Debian?” the answer was: “Not yet.” [8]

 The official reasons of not releasing a 64Bit OS:

“That deep backwards compatibility is really important for us, in large part because we don’t want
to orphan our customers. If someone spent $35 on an older-model Raspberry Pi five or six years ago, they
still spent $35, so it would be wrong for us to throw them under the bus.” [8]

The lack of official mature distribution for a 64-bit Linux prevented the use of Raspberry Pi Model
3B+ in a MongoDB cluster that is strictly requiring a 64-Bit OS.

5.2.2 Odroid XU4

Most powerful alternatives for Raspberry Pi must be used in the WiseGRID computer clusters for
the BigData Platform. An alternative SBC was found developed by the Korean company HardKernel. The
family of SBC developed by them is Odroid family. This family has many versions developed from 2012 and
the most powerful member yet is ODROID XU4 released in the summer of 2015.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 25

ODROID-XU4 is a new generation of computing device with more powerful, energy-efficient hard-
ware and a smaller form factor. Offering open source support, the board can run various flavours of Linux,
including the latest Ubuntu 16.04 and Android 4.4 KitKat and 7.1 Nougat.

By implementing the eMMC 5.0, USB 3.0 and Gigabit Ethernet interfaces, the ODROID-XU4 boasts
amazing data transfer speeds, a feature that is increasingly required to support advanced processing power
on ARM devices.

This allows users to truly experience an upgrade in computing, especially with faster booting, web
browsing, networking and 3D games [9].

Figure 9 – Odroid XU4 [9]

5.2.2.1 Technical specifications of ODROID XU4

Processor Samsung Exynos5 Octa ARM Cortex™-A15 Quad 2Ghz and Cortex™-A7
Quad 1.3GHz CPUs

Memory 2Gbyte LPDDR3 RAM at 933MHz (14.9GB/s memory bandwidth) PoP
stacked

3D Accelerator Mali-T628 MP6(OpenGL ES 3.0/2.0/1.1 and OpenCL 1.1 Full profile)
Video supports 1080p via HDMI cable (H.264+AAC based MP4 container format)
Video Out Standard Type A HDMI connector
Audio Instead of On-board Audio codec, there is I2S Expansion Port (CON11)
USB3.0 Host SuperSpeed USB standard A type connector x 2 port, Max Load: total 2Amp

for two USB 3.0 host ports
USB2.0 Host High Speed standard A type connector x 1 ports, Max Load: 500mA/port
Display HDMI monitor

https://wiki.odroid.com/odroid-xu4/hardware/xu4/pop

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 26

Storage (Option) MicroSD Card Slot, eMMC module socket: eMMC 5.0 HS4000 Flash Storage
Gigabit Ethernet LAN 10/100/1000Mbps Ethernet with RJ-45 Jack (Auto-MDIX support)
Serial console port Connecting to a PC gives access to the Linux console.

You can see the log of the boot, or to log in to the C1 to change the video or
network settings.
Note that this serial UART uses a 1.8-volt interface. We recommend the
USB-UART module kit from Hardkernel.
Molex 5268-04a (2.5mm pitch) is mounted on the PCB. Its mate is Molex 50-
37-5043 Wire-to-Board Crimp Housing.

RTC (Real Time Clock) back-
up battery connector

If you want to add an RTC functions for logging or keeping time when of-
fline, just connect a Lithium coin backup battery (CR2032 or equivalent).
All the RTC circuits are included on the ODROID-XU4 by default.
Molex 53398-0271 1.25mm pitch Header, Surface Mount, Vertical type (Ma-
te with Molex 51021-0200)

WiFi (Option) USB IEEE 802.11b/g/n 1T1R WLAN with Antenna (USB module)
HDD/SSD SATA interface
(Optional)

SuperSpeed USB (USB 3.0) to Serial ATA3 adapter for 2.5“/3.5” HDD and SSD
storage

Power (included) 5V 4A Power
Case (Option) Mechanical case & cooler (90 x 59 x 28 mm approx.)
PCB Size 83 x 58 x 20 mm approx.

Table 1 – Odroid XU4 specification

The technical specifications show a much more powerful ARM computer than Raspberry Pi 3b+ but using an
octacore ARM Cortex™-A15 Quad 2Ghz and Cortex™-A7 Quad 1.3GHz CPUs that is not a 64-bit processor.

5.2.2.2 ODROID XU4 Block Diagram

The block diagram of the Odroid XU4 published by Hardkernel [9] is shown in the image below

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 27

 Figure 10 – Odroid XU4 Block Diagram [9]

Some particularities have to be underlined:

 The 10/100/100 Gigabit Ethernet interface is connected to the processor through a dedicated
USB3.0 interface allowing full throughput of 1000 Mbit

 The eMMC 5.0 interface allow a higher data transfer than a SD card

 2Gbyte LPDDR3 RAM at 933MHz (14.9GB/s memory bandwidth) allows a better overall
performance

All this indicate that Odroid XU4 is the best candidate for applications where 64-bit OS is not
requested as in the Apache Hadoop-Spark cluster where the use of java allows using 32-bit OS

5.2.3 Odroid C2

For the MongoDB cluster is needed an SBC that officially support 64-bit OS. A candidate for this application
is Odroid C2

Some of the modern operating systems that run on the ODROID-C2 are Ubuntu, Android, Fedora, ARCH-
Linux, Debian, and OpenELEC, with thousands of free open-source software packages available. The
ODROID-C2 is an ARM device – the most widely used architecture for mobile devices and embedded 64-bit
computing. The ARM processor’s small size, reduced complexity and low power consumption makes it very
suitable for miniaturized devices such as wearables and embedded controllers. [10]

Odroid C2 is officially running Ububtu 16.04 LTS for 64-bit

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 28

Figure 11 – Odroid C2 [10]

5.2.3.1 Odroid C2 technical specifications

The technical specifications published by Hardkernel are in the table below.

Processor Amlogic S905: Quad Core Cortex™-A53 (ARMv8 64bit) processor with Triple

Core Mali-450 GPU

RAM 2GByte DDR3 (32bit / 912Mhz)

eMMC module socket The eMMC storage access time is 2-3 times faster than the SD card. You can
purchase 4 size options: 8GB, 16GB, 32GB and 64GB. Using an eMMC module
will increase speed and responsiveness, similar to the way in which upgrading
to a Solid-State Drive (SSD) in a typical PC also improves performance over a
mechanical hard drive (HDD).

Micro Secure Digital (Mi-
croSD) Card slot

There are two different methods of storage for the operating system.
One is by using a MicroSD Card and another is using an eMMC module, which
is normally used for external storage for smartphones and digital cameras.
The ODROID-C2 can utilize the newer UHS-1 SD model, which is about 2 times
faster than a normal class 10 card.
Note that there are some cards which needs additional booting delay time
around 30 seconds.
According to our test, most Sandisk Micro-SD cards don't cause the booting
delay. We will make a compatibility list soon.

5V 2A DC input This is for 5V power input, with an inner diameter of 0.8mm, and an outer di-
ameter of 2.5mm. The ODROID-C2 consumes less than 0.8A in most cases, but

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 29

it can climb to 2A if many passive USB peripherals are attached directly to the
main board.

USB host ports There are four USB 2.0 host ports.
You can plug a keyboard, mouse, WiFi adapter, storage or many other devices
into these ports.
You can also charge your smartphone with it! If you need more than 4 ports,
you can use a powered external USB hub to reduce the power load on the
main device.

HDMI port The Type-A standard-HDMI connector is populated on the board. If you use a
UHD/4K 60Hz display, your HDMI cable must be compatible with HDMI 2.0
speed.

Ethernet RJ-45 jack The standard RJ45 Ethernet port for LAN connection supports
10/100/1000Mbps speed.
Green LED Flashes when there is 100Mbps connectivity
Yellow (Orange/Amber) LED Flashes when there is 1000Mbps connectivity

Status / Power LEDs The ODROID-C2 has four indicator LEDs that provide visual feedback.
Red LED: Power Hooked up to 5V power
Blue LED
Alive Solid light: u-boot is running
Flashing: Kernel is running (heart beat)

Infrared (IR) receiver This is a remote-control receiver module that can accept standard 37.9Khz
carrier frequency based wireless data.

Micro USB OTG port You can use the standard micro-USB connector with Linux Gadget drivers on
your host PC, which means that the resources in the ODROID-C2 can be
shared with typical PCs.
You can also add a micro-USB to HOST connector if you need an additional
USB host port.
Note that this port can be used for power input if you install a jumper near
the HDMI connector.

General Purpose Input and
Output (GPIO) ports

These 40pin GPIO port can be used as GPIO/I2C/UART/ADC for electronics
and robotics.
The 40 GPIO pins on an ODROID-C2 are a great way to interface with physical
devices like buttons and LEDs using a lightweight Linux controller.
If you’re a C/C++ or Python developer, there’s a useful library called WiringPi
that handles interfacing with the pins. We’ve already ported the WiringPi v2
library to ODROID-C2.
Note that all the GPIO ports are 3.3Volt. The ADC inputs are limited to 1.8Volt.

Serial console port Connecting to a PC gives access to the Linux console.
You can see the log of the boot, or to log in to the C2 to change the video or
network settings.
Note that this serial UART uses a 3.3-volt interface. We recommend the USB-
UART module kit from Hardkernel.
Molex 5268-04a (2.5mm pitch) is mounted on the PCB. Its mate is Molex 50-
37-5043 Wire-to-Board Crimp Housing.

Gigabit Ethernet PHY Realtek RTL8211F is a highly integrated Ethernet transceiver that complies
with 10Base-T, 100Base-TX, and 1000Base-T IEEE 802.3 standards.

USB MTT hub controller GENESYS LOGIC GL852G is used to implement the 4-port Hub function which
fully complies with Universal Serial Bus Specification Revision 2.0.

USB VBUS controller NCP380 Protection IC for USB power supply from OnSemi.

Power switch port You can add a slide switch or rocker switch on this port if you want to imple-

https://wiki.odroid.com/odroid_c2/hardware/onsemi

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 30

ment a hardware on/off switch.
If this port is closed, the power is off.
If this port is opened, the power is on.

Power supply circuit Discrete DC-DC converters LDOs are used for CPU/DRAM/IO power supply.

Power protector IC NCP372 Over-voltage, Over-current, Reverse-voltage protection IC from On-
Semi.

Table 2 – Odroid C2 specifications

Odroid C2 has an opensource hardware with the block diagram bellow.

Figure 12 – Odroid C2 block diagram [10]

Some particularities must be underlined in the case of Odroid C2:

 The 10/100/100 Gigabit Ethernet interface is connected to the processor through a dedicated
Gigabit LAN MAC interface allowing full throughput of 1000 Mbit

 The eMMC 5.0 interface allow a higher data transfer than a SD card

 2Gbyte LPDDR3 RAM allows a better overall performance

All this indicate that Odroid C2 is the best candidate for applications where 64-bit OS is requested
as in the MongoDB cluster.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 31

6 INSTALLATION OF THE MONGODB CLUSTER

This chapter will detail the hardware and software installation of the MongoDB cluster. This chapter
is intended to be a handbook for installing the MongoDB cluster for WiseGRID BigData platform in the pilot
sites.

To help the understanding of the software procedure for installation and configuration some format
conventions will be used:

 Comments and explanations will be in standard text style

This is how the comments and explanations will be shown

 Linux commands or mongo shell commands will be shown in blue text and italics

This is how a command to be issued will look like

 The output generated by the Linux OS or mongo shell will be shown only when are needed to
be checked and will be in blue text and italics with a grey text highlight colour.

 This is how an output from OS or mongo shell will look like

 The content of configuration files that has to be modified will be shown in blue text and ital-
ics

This is how a configuration file

content will look like

Even the software procedures are extensively described, a basic skill for Linux user and administrator
is needed to fulfil correctly the procedures and reach the goal to have a running MongoDB cluster. Consid-
er in any moment to check the bibliography indicated in text and mainly the MongoDB online manuals [11]

6.1 PHYSICAL INSTALLATION OF THE ODROID C2 SBC FOR RACK MOUNTING

The SBC computers are very cheap since they do not have any enclosure. For using them in a com-
puter cluster it is needed a technical solution to mount them providing access to the connectors used in the
cluster application, to connect the power supply and provide cooling by free or forced airflow.

The solution in this project is using a DIN rail used in electrotechnical and automation industrial pan-
els and some 3D printed adaptors for fixing the SBC computers over the DIN rail. The DIN rail is cut to a
length to accommodate a standard 19” computer rack and is fixed to the rack with 3d printed supports.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 32

Figure 13 – DIN rail

The 3d printed supports were designed for this project in Autodesk Fusion 360

Figure 14 – 19" rack mounts for DIN Rail

6.1.1 3D PRINTED SUPORTS FOR ODROID C2

The supports for fixing the Odroid C2 used by the MongoDB computer cluster must allow the
placement of the SBC computers in a stack using optimally the space over the DIN rail, easy access to the
ethernet port and easy air flow for cooling. The idea of supports came from “instrng” that published a set
of DIN rail supports on “DIN Mounts: Pi, Arduino and disks” [12] on Thingiverse. On the Thingiverse was
published only the STL files for 3D printing so for adapting the DIN mounts for other SBC as Odroid C2 the
complete design in Autodesk Fusion 360 was remade.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 33

The Odroid C2 support was adapted for Odroid C2 SBC dimensions and some access holes for the
SD card was designed. Some views from different angles from the Autodesk Fusion 360 are shown below

Figure 15 – Odroid C2 DIN mount view 1

Figure 16 –Odroid C2 DIN mount view 2

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 34

Figure 17 – Odroid C2 DIN Mount view 3

The 11 Odroid C2 for a minimal Mongodb cluster installed on DIN mounts on a rack mountable DIN rail are
shown in the below picture

Figure 18 – Minimal MongoDB cluster in lab testing

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 35

6.1.2 POWER SUPPLY OF THE ODROID C2 SBCs

From the specifications published by Hardkernel is indicated that Odroid c2 is drawing a maximum current
of 2A at 5VDC per SBC.

The minimal Odroid C2 cluster is containing 11 SBC so considering a 0.8 x11= 8.8 A with a maximum
of 2x11=22A two power supplies for 5Vdc at 10 A will fulfil the power requirements. The power supplies do
not accept a parallel connection, so the eleven SBC are divided in two separate groups for the point of view
of power supply. For each group a small DC power rail is created by Wago 221 connectors with 5 connec-
tion each allowing a maximum of 20 A. The Wago connectors are placed in 3d printed sockets that allows
installation on the same DIN rail. The sockets and the DIN rail supports are designed by “ebraud” and pub-
lished as: “Support rail DIN Wago 221” [13]

Each Odroid C2 will be connected separately to the positive and negative power rails by two wires.
The Wago connectors allows each SBC to be separated powered for maintenance purposes. The wires can
be soldered in the place of a trough hole connector near the power plug or by using a standard connector
as in Odroid C2 power outlet. The connector is available by Hardkernel as declared in Odroid C2 Manual
[14] in page 5.

Figure 19 – Wago 221 power rail for connecting Odroid C2

5V 2A DC input This is for 5V power input, with an inner diameter of 0.8mm, and an outer diam-
eter of 2.5mm. The ODROID-C2 consumes less than 0.8A in most cases, but it can
climb to 2A if many passive USB peripherals are attached directly to the main
board.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 36

6.1.3 VENTILATION

The Odroid C2 is provided with a heatsink able to dissipate the heat generated by the electronics on
the board by a natural convection air flow. The distance from the Odroid C2 in the stack installed in sup-
ports described in chapter 6.1.1 allows the natural convection air flow. However, if the DIN rail is installed
in a closed 19” rack, a suitable forced ventilation has to be provided to the rack to evacuate heat equivalent
of 10 W per each Odroid C2 in the cluster.

Measuring the operating temperature of Odroid C2 is described in the Odroid C2 Manual [14] in page
14.

6.2 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM

The Odroid C2 eMMC or SD card ordered with the Linux version has preinstalled an image of Ubuntu
Mate 64 bits. For using a non-preinstalled SD card or eMMC, card instructions about how to flash an image
of ubuntu linux are described in page 28 of Odroid C2 Manual [14].

6.2.1 Defining the IP address system

The MongoDB cluster used for lab testing is a minimal structure. The structure was already explained
and is composed of:

 Three sharded replica set each of two replica nodes so a total of 6 nodes

 Three config servers having the same information of the cluster structure

 One arbiter

 One Application router.

The IP address system must be logic, mnemonic and consistent when the cluster is horizontally
scaled. The cluster can be scaled in two ways:

 by adding sharded replica set in order to increase the capacity of the database

 increase the number of application routers to allow more applications to access the data-
base in the same time

This are the reasons for the decision to allocate different IP subclass for sharded replica sets and
separate IP subclass “management“ nodes as config servers and application routers.

The cluster is behind a router that can assign IP by a suitable protocol as DHCP but in this case static
IP allocation configured in each node is used.

The network behind the router was defined as an 10.x.x.x private class A network. The router has a
static address of 10.1.1.2 and is the gateway for the cluster

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 37

The WiseGRID clusters have IPs in the 10.50.x.x sub class using different sub class as 10.50.1.x,
10.50.2.x for each node category. In each sub class the IP used are starting with 10.50.x.11 keeping
10.50.x.0 to 10.50.x.10 as reserved IPs for different purposes.

For the Mongo DB cluster, the 10.50.1. xx subclass is allocated for sharded replica sets and 10.50.2.xx
for management and application routers.

The IPs and host names used in mongoDB cluster are in the following tables.

Node IP First name Second name

Replica 0 in shard 0 10.50.1.11 mgdb1_m sh0r0

Replica 1 in shard 0 10.50.1.12 mgdb2_m sh0r1

Replica 0 in shard 1 10.50.1.13 mgdb3_m sh1r0

Replica 1 in shard 1 10.50.1.14 mgdb4_m sh1r1

Replica 0 in shard 2 10.50.1.15 mgdb5_m sh2r0

Replica 1 in shard 2 10.50.1.16 mgdb6_m sh2r1

Table 3 – IPs for sharded replica set

Each node has two names:

 First name for hardware management use and the structure is mgdb#_m where mgdb come from
MongoDB , the number of node and the termination _m indicate that is using a 64GB eMMC local
storage

 Second name is the function in the cluster and will be used in configuration of MongoDB cluster

The “management” nodes IP from the 10.50.2.x IPs are in the following table

Node IP First name Second name

Config server 0 10.50.2.11 mgdb7_s config0

Config server 1 10.50.2.12 mgdb8_s config1

Config server 2 10.50.2.13 mgdb9_s config 2

Arbiter 10.50.2.14 mgdb10_s arbiter

Application router 0 10.50.2.15 mgdb11_s router0

Table 4 – IP for management and application routers nodes

The hardware management names have the same structure while the termination _s indicate that
the SBC use 16GB SD card for local storage. These nodes do not store database data but only cluster
configuration metadata and uses only processing power so a much cheaper SD card can be used.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 38

6.2.2 Preparation of the nodes for cluster configuration

Linux administrator skills will be required for next chapters.

In order to assign for each node, the role into the cluster and start the cluster some prerequisites
configurations has to be done.

All configuration for the nodes will be done by using ssh access from preferably a Linux or MacOSx
station in the network or by a Windows station using Putty ssh client.

First, we have to change the default passwords. in the beginning for each node a DHCP address will
be automatically allocated so after finding the address in router list of dhcp leases the node can be ac-
cessed by SSH

ssh odroid@temporary_node_IP

The default password is odroid

sudo passwd

Change password to a suitable password that will be used on all nodes. For lab testing cluster was used
“Wisegrid18”

First the nodes will be configured for static IP. Ubuntu mate that is preinstalled on the local storage
for Odroid C2 is using DNSmasq application that is no use for the cluster nodes so it has to be deactivated
by:

sudo vi /etc/NetworkManager/NetworkManager.conf

comment the line :

dns= dnsmasq

 by changing to

 #dns = dnsmask

Reboot the node by

sudo reboot

After reboot log in the node as root by

ssh root@temporary_node_ip

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 39

Install Midnignt Commander as configuration tool:

apt update

apt install mc

edit /etc/network/interfaces for static IP allocation:

vi /etc/network/interfaces

add following lines

auto eth0

 iface eth0 inet static

 address 10.50.1.11

 netmask 255.0.0.0

 gateway 10.1.1.2

 dns-nameservers 10.1.1.1 10.1.1.2 8.8.8.8

 The yellow high lightened address must be changed for each node with suitable address. The
gateway and dns-nameservers lines will be adapted to the host network and routers.

 Reboot the node. Login as root. After checking the internet access from the nodes from the new IP
make an update of the operating system :

apt update

apt upgrade

Set hostname by editing /etc/hostname:

vi /etc/hostname

add mgdb1_m and adapted for all nodes conforming the table 1 and 2

All the nodes must know the names for all other nodes so the /etc/hosts file on all nodes must have the fol-
lowing content:

127.0.0.1 localhost

127.0.0.1 odroid64

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 40

10.50.1.11 mgdb1_m sh0r0

10.50.1.12 mgdb2_m sh0r1

10.50.1.13 mgdb3_m sh1r0

10.50.1.14 mgdb4_m sh1r1

10.50.1.15 mgdb5_m sh2r0

10.50.1.16 mgdb6_m sh2r1

10.50.2.11 mgdb7_s config0

10.50.2.12 mgdb8_s config1

10.50.2.13 mgdb9_s config2

10.50.2.14 mgdb10_s arbiter

10.50.2.15 mgdb11_s router0

10.50.3.11 xu4_1 master0

10.50.3.12 xu4_2 slave1

10.50.3.13 xu4_3 slave2

10.50.3.14 xu4_4 slave3

10.50.3.15 xu4_5 slave4

After this the prerequisite configuration prior of MongoDB installation can be considered done

6.3 INSTALLATION OF MANAGEMENT SOFTWARE: WEBMIN

A management software that can simplify the cluster management is a tool that should be installed.
As indicated in D5.1 Webmin is a good candidate for a management software.

Webmin is a modern, web control panel for any Linux machine. It allows to administer a server
through a simple interface. With Webmin, changes for settings for common packages on the fly are easy to
be done [15].

The installation can be done through “apt” package manager since Webmin has a dedicated reposi-
tory. The procedure of installing Webmin on Ubuntu 16.04 LTS computers is described in DigitalOcean tu-
torial: How to Install Webmin on Ubuntu 16.04 [15].

The following procedure must be repeated on all nodes.

Connect to each node using ssh as root.

nano /etc/apt/sources.list

Then add this line to the bottom of the file to add the new repository:

deb http://download.webmin.com/download/repository sarge contrib

Save the file and exit the editor.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 41

Next, add the Webmin PGP key so the node will trust the new repository:

wget http://www.webmin.com/jcameron-key.asc

 apt-key add jcameron-key.asc

Install Webmin by:

apt-get update

apt-get install webmin

Once the installation finishes, the following output will be presented:

Output

Webmin install complete. You can now login to

https://your_server_ip:10000 as root with your

root password, or as any user who can use `sudo`.

Connecting to one node by https://node_ip:10000 and logging in with root password the following
picture should appear:

Figure 20 – Webmin dashboard on a cluster node

https://node_ip:10000/

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 42

A good setting for beginning using Webmin is to set the automatic update for packages as in the fol-
lowing screen

Figure 21 – Webmin screen for automatic updates

6.4 INSTALLATION OF THE MONGODB ENTERPRISE

To assign cluster roles to the nodes a prerequisite is to have installed MongoDB on each cluster
nodes. For the MongoDB installation the OS should be up to date . To check use following commands on
each cluster node:

root@mgdb1_m:~# uname -a

Linux mgdb1_m 3.14.79-117 #1 SMP PREEMPT Tue Jan 2 23:46:30 BRST 2018 aarch64 aarch64
aarch64 GNU/Linux

root@mgdb1_m:~# cat /etc/os-release

NAME="Ubuntu"

VERSION="16.04.4 LTS (Xenial Xerus)"

ID=ubuntu

ID_LIKE=debian

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 43

PRETTY_NAME="Ubuntu 16.04.4 LTS"

VERSION_ID="16.04"

HOME_URL=http://www.ubuntu.com/

SUPPORT_URL="http://help.ubuntu.com/"

BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"

VERSION_CODENAME=xenial

UBUNTU_CODENAME=xenial

An installation of a MongoDB cluster on Odroid C2 computers is described in AndyFelong.com tutori-
al UPDATE: MongoDB 3.6 on ODROID C2 with Ubuntu 16.04.3 – ARM64 [16]

 Add the MongoDB repository and update the packages list. Install any updates and then install
MongoDB:

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 –recv
2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5

echo "deb [arch=amd64,arm64,ppc64el,s390x] http://repo.mongodb.com/apt/ubuntu xenial/mongodb-
enterprise/3.6 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-enterprise.list

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install mongodb-enterprise

After the package installation concludes the version installed can be checked by :

root@mgdb1_m:~# mongod --version

db version v3.6.6

git version: 6405d65b1d6432e138b44c13085d0c2fe235d6bd

OpenSSL version: OpenSSL 1.0.2g 1 Mar 2016

allocator: tcmalloc

modules: enterprise

build environment:

 distmod: ubuntu1604

 distarch: aarch64

 target_arch: aarch64

root@mgdb1_m:~# mongo --version

MongoDB shell version v3.6.6

git version: 6405d65b1d6432e138b44c13085d0c2fe235d6bd

OpenSSL version: OpenSSL 1.0.2g 1 Mar 2016

allocator: tcmalloc

http://www.ubuntu.com/

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 44

modules: enterprise

build environment:

 distmod: ubuntu1604

 distarch: aarch64

 target_arch: aarch64

The mongod service can be started by:

root@mgdb1_m:~# service mongod start

root@mgdb1_m:~# service mongod status

 mongod.service - High-performance, schema-free document-oriented database

 Loaded: loaded (/lib/systemd/system/mongod.service; disabled; vendor preset:

 Active: active (running) since Wed 2018-07-11 12:59:32 EDT; 8s ago

 Docs: https://docs.mongodb.org/manual

 Main PID: 4386 (mongod)

 CGroup: /system.slice/mongod.service

 ââ4386 /usr/bin/mongod --config /etc/mongod.conf

To start the mongod service upon boot of the node the following command can be used :

root@mgdb1_m:~# systemctl enable mongod

Created symlink from /etc/systemd/system/multi-user.target.wants/mongod.service to
/lib/systemd/system/mongod.service.

The above steps for MongoDB installation must be applied on all MongoDB cluster nodes.

6.5 INSTALLATION OF MONGODB CLUSTER

The installation of a MongoDB cluster is not a trivial procedure and should be done with caution after
reading carefully the above instructions and used bibliography. The general procedure is to log on the
nodes as “root” but with caution since using “root” user provide all access rights and any error command
will have all the rights. An alternative is to use a sudo group user preceding the commands that request
root access with “sudo”.

After the installation of MongoDB on all nodes a user mongodb and a group mongodb are created by
the installation script. This can be checked by:

root@mgdb1_m:~# cat /etc/passwd | grep mongodb

mongodb:x:108:65534::/home/mongodb:/bin/false

and for groups:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 45

root@mgdb1_m:~# cat /etc/group | grep mongodb

mongodb:x:114:mongodb

The next step is to create a data folder on each node to be used by the MongoDB processes

root@mgdb2_m:~# mkdir /data

root@mgdb2_m:~# mkdir /data/db

root@mgdb2_m:~# mkdir /data/mongo-metadata

The /data folders must to be owned by the user running mongoDB processes mongodb.

root@mgdb2_m:~# chown -R mongodb:mongodb /data

There are many tutorials online showing procedures of MongoDB sharded cluster deployment that
are mentioned in the bibliography but the procedure that will be described bellow is not following exactly
none of the tutorials.

This are the tutorials:

CodingMiles.com Step by step Mongo DB sharded cluster deployment [17]

www.guru99.com MongoDB Sharded Cluster - Step by Step Implementation [18]

www.hatcher.com How to deploy a MongoDB cluster (version 3.4) [19]

www.alibabacloud.com High-availability MongoDB Cluster Configuration Solutions [20]

6.5.1 Setting of configuration servers

The configuration servers have a very important role in the cluster since they hold information
about the cluster structure and roles of each node in the cluster. In production cluster is recommended to
have three config server nodes. In the lab testing minimal cluster the config servers are :

Node IP First name Second name

Config server 0 10.50.2.11 mgdb7_s config0

Config server 1 10.50.2.12 mgdb8_s config1

Config server 2 10.50.2.13 mgdb9_s config 2

Table 5 – Config servers IP and names

For the config server the mongoDB process is mongod. The cluster role for the config servers is “configsvr”

and replication setName is “cs “

The mongod process is using as configuration file /etc/mongod.conf

 The mongod.conf file should be adapted in order to:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 46

 Allow access from any IP to mongod process on port 27017
The section net: will have the content
net:
 port: 27017
 bindIp: 0.0.0.0

 Set the data folder to /data/mongo-metadata
The storage section will have the content:
storage:
 dbPath: /data/mongo-metadata
 journal:
 enabled: true

 Define replication name as “cs”, configuration server
The section replication will contain:
replication:
 replSetName: cs

 Define the cluster role as configsvr
The section sharding will contain:
sharding:
 clusterRole: configsvr

The configuration file for a config server contents is:

 root@mgdb7_s:~# cat /etc/mongod.conf

mongod.conf

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

Where and how to store data.

storage:

 dbPath: /data/mongo-metadata

 journal:

 enabled: true

engine:

mmapv1:

wiredTiger:

where to write logging data.

systemLog:

 destination: file

 logAppend: true

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 47

 path: /var/log/mongodb/mongod.log

network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

how the process runs

processManagement:

 timeZoneInfo: /usr/share/zoneinfo

#security:

#operationProfiling:

replication:

 replSetName: cs

sharding:

 clusterRole: configsvr

Enterprise-Only Options:

#auditLog:

#snmp:

The configuration file above should be replicated on all configuration servers in lab testing cluster case con-
fig0, config1, config 2

6.5.2 Activation of config servers

Now the three configuration servers are configurated, the mongod daemon should be restarted to consider
the new settings.

 systemctl restart mongod

systemctl status mongod

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 48

 mongod.service - High-performance, schema-free document-oriented database

 Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset: enabled)

 Active: active (running) since Thu 2018-07-12 04:25:03 EDT; 36s ago

 Docs: https://docs.mongodb.org/manual

 Main PID: 17004 (mongod)

 CGroup: /system.slice/mongod.service

 ââ17004 /usr/bin/mongod --config /etc/mongod.conf

Jul 12 04:25:03 mgdb1_m systemd[1]: Started High-performance, schema-free document-oriented data-
base.

The initiate of the config servers is done by connection on one of the config servers trough mongo shell

root@mgdb7_s:~# mongo

MongoDB shell version v3.6.6

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.6

Server has startup warnings:

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten]

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly
recommended with the WiredTiger storage engine

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten] ** See
http://dochub.mongodb.org/core/prodnotes-filesystem

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten]

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for
the database.

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten] ** Read and write access to data and con-
figuration is unrestricted.

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten]

MongoDB Enterprise cs:SECONDARY>

And sending the commands to the MongoDB

rs.initiate(

 {

 _id: "cs",

 configsvr: true,

 members: [

 { _id : 0, host : "config0:27017" },

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 49

 { _id : 1, host : "config1:27017" },

 { _id : 2, host : "config2:27017" }

]

 }

)

The replica set of config servers should be running

6.5.3 Setting of replicated shards

The replica shards server nodes contain the data of the databases processed by the mongoDB clus-
ter. In the lab testing minimal cluster there are three shards, each one composed by a two replica .

Node IP First name Second name

Replica 0 in shard 0 10.50.1.11 mgdb1_m sh0r0

Replica 1 in shard 0 10.50.1.12 mgdb2_m sh0r1

Replica 0 in shard 1 10.50.1.13 mgdb3_m sh1r0

Replica 1 in shard 1 10.50.1.14 mgdb4_m sh1r1

Replica 0 in shard 2 10.50.1.15 mgdb5_m sh2r0

Replica 1 in shard 2 10.50.1.16 mgdb6_m sh2r1

Table 6 – Replica shards servers

For the sharded servers the mongoDB process is mongod. The cluster role for the sharded servers is
“shardsvr”

and replication setName are “rs0 “, “rs1”, “rs2” for each replicated shard

The mongod process is using as configuration file /etc/mongod.conf

 The mongod.conf file should be adapted in order to:

• Allow access from any IP to mongod process on port 27017

The section net: will have the content

net:

 port: 27017

 bindIp: 0.0.0.0

• Set the data folder to /data/mongo-metadata

The storage section will have the content:

storage:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 50

 dbPath: /data/mongo-metadata

 journal:

 enabled: true

• Define replication name as rs0, rs1, rs2 for each replica shard server

The section replication will contain:

replication:

 replSetName: rs0

for replica shards in rs0

replication:

 replSetName: rs1

for replica shards in rs1

replication:

 replSetName: rs2

for replica shards in rs2

• Define the cluster role as shardsvr

The section sharding will contain:

sharding:

 clusterRole: shardsvr

The configuration file for a shard server is rs0 contents is:

 root@mgdb1_m:~# cat /etc/mongod.conf

mongod.conf

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

Where and how to store data.

storage:

 dbPath: /data/mongo-metadata

 journal:

 enabled: true

engine:

mmapv1:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 51

wiredTiger:

where to write logging data.

systemLog:

 destination: file

 logAppend: true

 path: /var/log/mongodb/mongod.log

network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

how the process runs

processManagement:

 timeZoneInfo: /usr/share/zoneinfo

#security:

#operationProfiling:

replication:

 replSetName: rs0

sharding:

 clusterRole: shardsvr

Enterprise-Only Options:

#auditLog:

#snmp:

The same configuration file should be replicated in sh0r1 server

The configuration file for a shard server is rs1 contents is:

root@mgdb3_m:~# cat /etc/mongod.conf

mongod.conf

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 52

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

Where and how to store data.

storage:

 dbPath: /data/mongo-metadata

 journal:

 enabled: true

engine:

mmapv1:

wiredTiger:

where to write logging data.

systemLog:

 destination: file

 logAppend: true

 path: /var/log/mongodb/mongod.log

network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

how the process runs

processManagement:

 timeZoneInfo: /usr/share/zoneinfo

#security:

#operationProfiling:

replication:

 replSetName: rs1

sharding:

 clusterRole: shardsvr

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 53

Enterprise-Only Options:

#auditLog:

#snmp:

The same configuration file should be replicated in sh1r1 server

The configuration file for a shard server is rs2 contents is:

root@mgdb5_m:~# cat /etc/mongod.conf

mongod.conf

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

Where and how to store data.

storage:

 dbPath: /data/mongo-metadata

 journal:

 enabled: true

engine:

mmapv1:

wiredTiger:

where to write logging data.

systemLog:

 destination: file

 logAppend: true

 path: /var/log/mongodb/mongod.log

network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

how the process runs

processManagement:

 timeZoneInfo: /usr/share/zoneinfo

#security:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 54

#operationProfiling:

replication:

 replSetName: rs2

sharding:

 clusterRole: shardsvr

Enterprise-Only Options:

#auditLog:

#snmp:

The same configuration file should be replicated in sh2r1 server.

6.5.4 Activation of replica shards servers

Now the six replica shards servers are configurated, the mongod daemon should be restarted to consider
the new settings.

 systemctl restart mongod

systemctl status mongod

 mongod.service - High-performance, schema-free document-oriented database

 Loaded: loaded (/lib/systemd/system/mongod.service; enabled; vendor preset: enabled)

 Active: active (running) since Thu 2018-07-12 04:25:03 EDT; 36s ago

 Docs: https://docs.mongodb.org/manual

 Main PID: 17004 (mongod)

 CGroup: /system.slice/mongod.service

 ââ17004 /usr/bin/mongod --config /etc/mongod.conf

Jul 12 04:25:03 mgdb1_m systemd[1]: Started High-performance, schema-free document-oriented data-
base.

The initiate of the each replica shard is done by connection on the primary server of each replica shard
trough mongo shell

root@mgdb1_s:~# mongo

MongoDB shell version v3.6.6

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.6

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 55

Server has startup warnings:

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten]

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly
recommended with the WiredTiger storage engine

2018-07-12T03:54:00.317-0400 I STORAGE [initandlisten] ** See
http://dochub.mongodb.org/core/prodnotes-filesystem

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten]

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for
the database.

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten] ** Read and write access to data and con-
figuration is unrestricted.

2018-07-12T03:54:03.411-0400 I CONTROL [initandlisten]

MongoDB Enterprise cs:SECONDARY>

And sending the commands to the MongoDB for rs0

rs.initiate({

 _id : "rs0",

 members: [{ _id : 0, host : "sh0r0:27017" }]

})

rs.add("sh0r1:27017")

rs.addArb("arbiter:30000")

rs.status()

{ "set" : "rs0",

 "date" : ISODate("2018-07-12T09:19:02.405Z"),

 "myState" : 2,

 "term" : NumberLong(4),

 "syncingTo" : "sh0r1:27017",

 "syncSourceHost" : "sh0r1:27017",

 "syncSourceId" : 1,

 "heartbeatIntervalMillis" : NumberLong(2000),

 "optimes" : {

 "lastCommittedOpTime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 },

 "readConcernMajorityOpTime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 56

 },

 "appliedOpTime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 },

 "durableOpTime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 }

 },

 "members" : [

 {

 "_id" : 0,

 "name" : "sh0r0:27017",

 "health" : 1,

 "state" : 2,

 "stateStr" : "SECONDARY",

 "uptime" : 3239,

 "optime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 },

 "optimeDate" : ISODate("2018-07-12T09:18:56Z"),

 "syncingTo" : "sh0r1:27017",

 "syncSourceHost" : "sh0r1:27017",

 "syncSourceId" : 1,

 "infoMessage" : "",

 "configVersion" : 3,

 "self" : true,

 "lastHeartbeatMessage" : ""

 },

 {

 "_id" : 1,

 "name" : "sh0r1:27017",

 "health" : 1,

 "state" : 1,

 "stateStr" : "PRIMARY",

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 57

 "uptime" : 3234,

 "optime" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 },

 "optimeDurable" : {

 "ts" : Timestamp(1531387136, 2),

 "t" : NumberLong(4)

 },

 "optimeDate" : ISODate("2018-07-12T09:18:56Z"),

 "optimeDurableDate" : ISODate("2018-07-12T09:18:56Z"),

 "lastHeartbeat" : ISODate("2018-07-12T09:19:01.744Z"),

 "lastHeartbeatRecv" : ISODate("2018-07-12T09:19:01.151Z"),

 "pingMs" : NumberLong(1),

 "lastHeartbeatMessage" : "",

 "syncingTo" : "",

 "syncSourceHost" : "",

 "syncSourceId" : -1,

 "infoMessage" : "",

 "electionTime" : Timestamp(1531383912, 1),

 "electionDate" : ISODate("2018-07-12T08:25:12Z"),

 "configVersion" : 3

 },

 {

 "_id" : 2,

 "name" : "arbiter:30000",

 "health" : 0,

 "state" : 8,

 "stateStr" : "(not reachable/healthy)",

 "uptime" : 0,

 "lastHeartbeat" : ISODate("2018-07-12T09:19:01.240Z"),

 "lastHeartbeatRecv" : ISODate("1970-01-01T00:00:00Z"),

 "pingMs" : NumberLong(0),

 "lastHeartbeatMessage" : "Connection refused",

 "syncingTo" : "",

 "syncSourceHost" : "",

 "syncSourceId" : -1,

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 58

 "infoMessage" : "",

 "configVersion" : -1

 }

],

 "ok" : 1,

 "operationTime" : Timestamp(1531387136, 2),

 "$gleStats" : {

 "lastOpTime" : Timestamp(0, 0),

 "electionId" : ObjectId("000000000000000000000000")

 },

 "$clusterTime" : {

 "clusterTime" : Timestamp(1531387138, 1),

 "signature" : {

 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),

 "keyId" : NumberLong(0)

 }

 },

 "$configServerState" : {

 "opTime" : {

 "ts" : Timestamp(1531387115, 6),

 "t" : NumberLong(4)

 }

 }

}

The answer might differ since this example is from a running cluster, but the two members of each shard
has to be indicated

 The commands to initiate rs1 will be sent to sh1r0 are:

rs.initiate({

 _id : "rs1",

 members: [{ _id : 0, host : "sh1r0:27017" }]

})

rs.add("sh1r1:27017")

rs.addArb("arbiter:30001")

rs.status()

The reply from the second shard should indicate the status of sh1ro and sh1r1

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 59

The commands to initiate rs2 will be sent to sh2r0 and are:

rs.initiate({

 _id : "rs2",

 members: [{ _id : 0, host : "sh2r0:27017" }]

})

rs.add("sh2r1:27017")

rs.addArb("arbiter:30002")

rs.status()

The reply from the third shard should indicate the status of sh1ro and sh1r1

6.5.5 Configuration and activation of arbiter instances

Arbiters are mongod instances that are part of a replica set but do not hold data. Arbiters partici-
pate in elections in order to break ties. If a replica set has an even number of members, add an arbiter.

Arbiters have minimal resource requirements and do not require dedicated hardware. You can de-
ploy an arbiter on an application server or a monitoring host.

In the lab testing cluster, one node is used to run three instances of mongod , one for each replica set .

For each instance of mongod a separate data folder is used.

First step is creating the data folders on the arbiter node and allocating them to the mongodb user:

root@mgdb10_s:~# mkdir /data

root@mgdb10_s:~# mkdir /data/arb0

root@mgdb10_s:~# mkdir /data/arb1

root@mgdb10_s:~# mkdir /data/arb2

root@mgdb10_s:~# chown -R mongodb:mongodb /data

The next step is launching an instance of mongod for each replica set rs0,rs1,rs2 using each a separate data
folder /data/arb0, /data /arb1, /data/arb2 .

sudo -u mongodb mongod --port 30000 --dbpath /data/arb0 --replSet rs0 --bind_ip 0.0.0.0 &

sudo -u mongodb mongod --port 30001 --dbpath /data/arb1 --replSet rs1 --bind_ip 0.0.0.0 &

sudo -u mongodb mongod --port 30002 --dbpath /data/arb2 --replSet rs2 --bind_ip 0.0.0.0 &

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 60

6.5.6 Configuration and activation of application routers

The application routers are mongoDB cluster nodes that does not hold data but are processing the
applications using the database requests and sending them to the cluster. the application routers use mon-
gos process instead of mongod used by configuration servers and replica shard servers.

In order to connect to the cluster, the mongos daemon for the application router should know the
nodes of the cluster that are running the role of the config servers

Mongos instance can use a similar config file as the /etc/mongod.conf that are indicating the nodes
that are running the config server’s role.

The sharding field contain the names and port for the config servers:

 sharding:

 configDB: cs/config0:27017,config1:27017,config2:27017

The complete configuration file is :

root@mgdb11_s:~# cat /etc/mongod.conf

mongod.conf

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

Where and how to store data.

#storage:

dbPath: /var/lib/mongodb

journal:

enabled: true

engine:

mmapv1:

wiredTiger:

where to write logging data.

systemLog:

 destination: file

 logAppend: true

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 61

 path: /var/log/mongodb/mongod.log

network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

how the process runs

processManagement:

 timeZoneInfo: /usr/share/zoneinfo

#security:

#operationProfiling:

#replication:

sharding:

 configDB: cs/config0:27017,config1:27017,config2:27017

Enterprise-Only Options:

#auditLog:

#snmp:

 For running the application router from the node startup is needed to have a service file mon-
gos.service . The easiest way is to copy the existing file from mongod.service and adapt it:

cd /lib/systemd/system

cp mongod.service mongos.service

nano mongod.service

The mongos.service file content is

[Unit]

Description=High-performance, schema-free document-oriented database application server

After=network.target

Documentation=https://docs.mongodb.org/manual

[Service]

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 62

User=mongodb

Group=mongodb

ExecStart=/usr/bin/mongos --config /etc/mongod.conf

PIDFile=/var/run/mongodb/mongos.pid

file size

LimitFSIZE=infinity

cpu time

LimitCPU=infinity

virtual memory size

LimitAS=infinity

open files

LimitNOFILE=64000

processes/threads

LimitNPROC=64000

locked memory

LimitMEMLOCK=infinity

total threads (user+kernel)

TasksMax=infinity

TasksAccounting=false

Recommended limits for for mongod as specified in

http://docs.mongodb.org/manual/reference/ulimit/#recommended-settings

[Install]

WantedBy=multi-user.target

The mongod service should be disabled from systemctl and enabled the mongos service

systemctl disable mongos.service

systemctl enable mongos.service

 systemctl start mongos.service

 Test the status of mongos service

root@mgdb11_s:/lib/systemd/system# systemctl status mongos

mongos.service - High-performance, schema-free document-oriented database application server

 Loaded: loaded (/lib/systemd/system/mongos.service; enabled; vendor preset: enabled)

 Active: active (running) since Thu 2016-02-11 11:28:05 EST; 2 years 4 months ago

 Docs: https://docs.mongodb.org/manual

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 63

 Main PID: 865 (mongos)

 CGroup: /system.slice/mongos.service

 /usr/bin/mongos --config /etc/mongod.conf

mgdb11_s systemd[1]: Started High-performance, schema-free document-oriented database application
server.

Connect to the mongos router trough mongo shell on application router

root@mgdb11_s:~# mongo

MongoDB shell version v3.6.6

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 3.6.6

Server has startup warnings:

2016-02-11T11:28:09.174-0500 I CONTROL [main]

2016-02-11T11:28:09.174-0500 I CONTROL [main] ** WARNING: Access control is not enabled for the da-
tabase.

2016-02-11T11:28:09.174-0500 I CONTROL [main] ** Read and write access to data and configuration
is unrestricted.

2016-02-11T11:28:09.174-0500 I CONTROL [main]

MongoDB Enterprise mongos>

The mongo shell confirms the connection to the mongos instance . the next steps is to add shards to the
application router :

sh.addShard("rs0/sh0r0:27017")

sh.addShard("rs0/sh0r1:27017")

sh.addShard("rs1/sh1r0:27017")

sh.addShard("rs1/sh1r1:27017")

sh.addShard("rs2/sh2r0:27017")

sh.addShard("rs2/sh2r1:27017")

Create a “admin user”

use admin

db.createUser(

 {

 user: "admin",

 pwd: "Wisegrid18",

 roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 64

 }

)

Create a database for each Wisegrid application by creating a collection inside each database. After that the
sharding on each database should be activated:

sh.enableSharding("WG_Cockpit")

sh.enableSharding("WG_Coop")

sh.enableSharding("WG_Corp")

sh.enableSharding("WG_EVP")

sh.enableSharding("WG_Resco")

The application router is running and we can test the connection to the cluster by MongoDB Compass con-
necting to the IP of the application router:

Figure 22 – Connection to the MongoDB application router trough MongoDB Compass

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 65

6.5.7 Final settings and online connection

For access to the MongoDB cluster from outside of private network the router is configured for port
forwarding so the traffic to port 27027 to the external interface of the router is directed to port 27017 of
the router0 node. Further adding of new application routers, the traffic to ports 27028… will be forwarded
to port 27017 of router 1 and so on.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 66

7 INSTALLATION OF THE APACHE HADOOP CLUSTER

7.1 PHYSICAL INSTALLATION OF THE ODROID XU4 SBC FOR RACK MOUNTING

The Apache Hadoop-Spark cluster has a minimal structure of five pieces of Odroid XU4 SBCs.

The Odroid XU4 SBC are installed on the same DIN rail with supports for 19” rack mount described in
chapter 6.1

7.1.1 3D PRINTED SUPORTS FOR ODROID XU4

The Odroid XU4 used in lab testing are with passive cooling airflow so they only have a heatsink
with no fans. This implies that the height of one Odroid XU4 SBC is higher than an Odroid XU4 with
heatsink and fan. Also, the connector orientation is completely different from Odroid C2, so the DIN rail
stands has to be redesigned. The DIN rail supports for Odroid XU4 were designed using the same Autodesk
Fusion 360 with the bigger dimension on vertical axis to have the ethernet socket in front and a width of
the support of 38 mm instead of 25 mm as in the odroid C2 SBC support. The support need an opening to
allow the access to the boot media selector switch.

Images of the Odroid XU4 support are bellow.

Figure 23 – Odroid XU4 Din Rail Support view 1

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 67

Figure 24 – Odroid XU4 support view 2

Figure 25 – Odroid XU4 DIN rail support view 3

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 68

7.1.2 POWER SUPPLY OF THE ODROID XU4 SBCs

From the specifications published by Hardkernel is indicated that Odroid XU4 is drawing a maxi-
mum current of 4A at 5VDC per SBC. This information is from Odroid XU4 manual [21] page 4.

The minimal Odroid XU4 cluster is containing 5 SBC so considering a maximum of 5x4=20A one
SMPS power supply for 5Vdc at 20 A will fulfil the power requirements. For the cluster a DC power rail is
created by Wago 221 connectors with 5 connection each allowing a maximum of 20 A. The Wago connect-
ors are placed in 3d printed sockets that allows installation on the same DIN rail. The sockets and the DIN
rail supports are designed by “ebraud” and published as: “Support rail DIN Wago 221” [13]

Each Odroid C4 will be connected separately to the positive and negative power rails by two wires.
The Wago connectors allows each SBC to be separated powered for maintenance purposes. The wires can
be soldered on the back of the power plug or by using a standard connector as in Odroid XU4 power outlet.
The connector is available by Hardkernel as declared in Odroid XU4 manual [21] in page 4.

A picture of a minimal cluster of the five Odroid XU4 with the Wago 221 power rail and connections is in
the following picture.

Figure 26 – Minimal Odroid XU4 Hadoop cluster

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 69

7.1.3 VENTILATION

The Odroid XU4 used for lab testing are provided with a heatsink able to dissipate the heat generat-
ed by the electronics on the board by a natural convection air flow. The distance from the Odroid Xu4 in
the stack installed in supports described in chapter 7.1.1 is over 38 mm and allows the natural convection
air flow. However, if the DIN rail is installed in a closed 19” rack a suitable forced ventilation has to be pro-
vided to the rack to evacuate heat equivalent of 20 W per each Odroid XU4 in the cluster.

7.2 INSTALLATION OF UBUNTU LINUX OPERATING SYSTEM
The Odroid XU4 eMMC or SD card ordered with the Linux version have preinstalled an image of Ub-

untu 16.04 LTS. For using a non-preinstalled SD card or eMMC card instructions about how to flash an im-
age of Ubuntu linux are described starting from in page 18 of Odroid XU4 Manual [21].

7.2.1 Defining the IP address system

The Hadoop-Spark cluster used for lab testing is a minimal structure. The structure was already ex-
plained and is composed of:

 One master node

 Four slave nodes

The IP address system must be logic, mnemonic and consistent when the cluster is horizontally
scaled. The cluster can be scaled in two ways:

 by adding slave nodes in order to increase the capacity of processing of Hadoop Spark clus-
ter

 by adding more master and slave nodes

This are the reasons for the decision to allocate different IP subclass from the mongoDB cluster

The cluster is behind a router that can assign IP by a suitable protocol as DHCP but in this case static
IP allocation configured in each node is used.

The network behind the router was defined as a 10.x.x.x private class A network. The router has a
static address of 10.1.1.2 and is the gateway for the cluster

The WiseGRID clusters have IPs in the 10.50.x.x sub class so for the Hadoop Spark cluster the class as
10.50.3.x is used in the sub class the IP used are starting with 10.50.3.11 keeping 10.50.3.0 to 10.50.3.10 as
reserved IPs for different purposes.

The IPs and host names used in Hadoop Spark cluster are in the following table.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 70

Node IP First name Second name

Master0 node 10.50.3.11 Xu4_1 master0

Slave1 10.50.3.12 Xu4_2 slave1

Slave2 10.50.3.13 Xu4_3 Slave2

Slave3 10.50.3.14 Xu4_4 Slave3

Slave4 10.50.3.15 Xu4_5 Slave4

Table 7 – Names and IP for Hadoop Spark cluster

Each node has two names:

 First name for hardware management use and the structure is Xu4_#

 Second name is the function in the cluster and will be used in configuration of Hadoop Spark cluster

7.2.2 Preparation of the nodes for cluster configuration

Linux administrator skills will be required for next chapters.

In order to assign for each node, the role into the cluster and start the cluster some prerequisites
configurations have to be done.

All configuration for the nodes will be done by using ssh access from preferably a Linux or MacOSx
station in the network or by a Windows station using Putty ssh client.

It is needed to change the default passwords. In the beginning for each node a DHCP address will be
automatically allocated, so after finding the address in router list of dhcp leases the node can be accessed
by SSH

ssh odroid@temporary_node_IP

The default password is odroid

sudo passwd

Change password to a suitable password that will be used on all nodes. For lab testing cluster was used
“Wisegrid18”

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 71

First the nodes will be configured for static IP. Ubuntu 1604 LTS that is preinstalled on the local stor-
age for Odroid XU4 is using DNSmasq application that is no use for the cluster nodes so it has to be deac-
tivated by:

sudo vi /etc/NetworkManager/NetworkManager.conf

comment the line :

dns= dnsmasq

 by changing to

 #dns = dnsmask

Reboot the node by

sudo reboot

After reboot log in the node as root by

ssh root@temporary_node_ip

Install Midnignt Commander as configuration tool :

apt update

apt install mc

edit /etc/network/interfaces for static IP allocation :

vi /etc/network/interfaces

add following lines

auto eth0

 iface eth0 inet static

 address 10.50.3.11

 netmask 255.0.0.0

 gateway 10.1.1.2

 dns-nameservers 10.1.1.1 10.1.1.2 8.8.8.8

 The yellow high lightened address must be changed for each node with suitable address. The
gateway and dns-nameservers lines will be adapted to the host network and routers.

 Reboot the node. Login as root. After checking the internet access from the nodes from the new IP
make an update of the operating system:

apt update

apt upgrade

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 72

Set hostname by editing /etc/hostname:

vi /etc/hostname

add XU4_1 and adapted for all nodes conforming the Table 7 – Names and IP for Hadoop Spark cluster

All the nodes must know the names for all other nodes so the /etc/hosts file on all nodes must have the fol-
lowing content:

127.0.0.1 localhost

127.0.0.1 odroid64

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

10.50.1.11 mgdb1_m sh0r0

10.50.1.12 mgdb2_m sh0r1

10.50.1.13 mgdb3_m sh1r0

10.50.1.14 mgdb4_m sh1r1

10.50.1.15 mgdb5_m sh2r0

10.50.1.16 mgdb6_m sh2r1

10.50.2.11 mgdb7_s config0

10.50.2.12 mgdb8_s config1

10.50.2.13 mgdb9_s config2

10.50.2.14 mgdb10_s arbiter

10.50.2.15 mgdb11_s router0

10.50.3.11 xu4_1 master0 master

10.50.3.12 xu4_2 slave1

10.50.3.13 xu4_3 slave2

10.50.3.14 xu4_4 slave3

10.50.3.15 xu4_5 slave4

After this the prerequisite configuration prior of Hadoop installation can be considered done

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 73

7.3 INSTALLATION OF MANAGEMENT SOFTWARE, DISTRIBUTED CLI SOFTWARE

The installation of Webmin software is similar to the installation on the nodes of MongoDB cluster
and described in the chapter 6.3. Another useful tool for distributed installation on cluster nodes is “paral-
lel-ssh” that allows to run a similar command on more than one computer. Parallel-ssh is written in Python
so a simple installation of Python pip will allow the use of the tool.

apt-get install python-pip

Parallel-ssh is using list files that contains the nodes for executing the same command. The list files
are in the root home folder on the master0 node:

root@xu4_1:~# cat hadoop_cluster.txt

10.50.3.11

10.50.3.12

10.50.3.13

10.50.3.14

10.50.3.15

root@xu4_1:~# cat hadoop_slaves.txt

10.50.3.12

10.50.3.13

10.50.3.14

10.50.3.15

root@xu4_1:~# cat mongo_cluster.txt

10.50.1.12

10.50.1.13

10.50.1.14

10.50.1.15

10.50.1.16

10.50.2.11

10.50.2.12

10.50.2.13

10.50.2.14

10.50.2.15

Another tool that is used to deploy the software on several nodes of the cluster is Rsync . To install
run:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 74

apt-get install rsync

on all the cluster nodes

7.4 INSTALLATION OF THE HADOOP SOFTWARE

Hadoop software is written in Java so some prerequisites must be fulfilled prior of installation of
cluster software.

Some tutorials can be used online to guide an installation of a Hadoop cluster on a small cluster of
SBCs. This installation was directed by DIY Big Data: Installing Hadoop onto an ODROID XU4 Cluster [22]

Before instalingl Hadoop, let’s discuss what we are trying to accomplish by installing it. Hadoop has
three components: the Hadoop File System (HDFS), Yarn, and Map-Reduce. For our purposes, we are most
interested in HDFS, but we will play around with the other two. What HDFS will do for us is turn the Mi-
croSD cards installed onto every node into a single “virtual drive” that files can be written to for use by the
cluster’s analytics applications. HDFS will (if appropriate) break a large file up into parts and then distribute
those parts around the cluster. The benefit of this is that when doing distributed computing operations on
the file, work will be split up with each node being responsible for processing a set of parts [22].

7.4.1 Installing Java

Oracle’s latest version of Java8 is needed on all the nodes of the cluster, on master0 and also in the
slaves1 to slave4.

add-apt-repository ppa:webupd8team/java

apt-get update

apt-get install oracle-java8-installer

7.4.2 Preparing the user, groups and rights for installing Hadoop

A user account with the name of “hduser” member of group “Hadoop” is needed on all cluster nodes
and this user need password less access on all the slave nodes. The use of parallel-ssh is useful for non-
interactive commands. Prior to use parallel-ssh a ssh connection to all member on the cluster is needed to
store the key on the master0 ssh files.

ssh root@10.50.3.11

ssh root@10.50.3.12

ssh root@10.50.3.13

ssh root@10.50.3.14

 ssh root@10.50.3.15

parallel-ssh -i -h hadoop_cluster.txt -l root -A "addgroup hadoop"

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 75

To create the hduser in each node a direct connection by ssh in each node is required due to interac-
tive mode of “adduser” command.

 root@xu4_1:~# adduser --ingroup hadoop hduser

Adding user `hduser' ...

Adding new user `hduser' (1001) with group `hadoop' ...

Creating home directory `/home/hduser' ...

Copying files from `/etc/skel' ...

Enter new UNIX password:Wisegrid18

Retype new UNIX password:Wisegrid18

passwd: password updated successfully

Changing the user information for hduser

Enter the new value, or press ENTER for the default

 Full Name []: Hadoop User

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] y

The “hduser” should be in sudo group

root@xu4_1:~# adduser hduser sudo

Adding user `hduser' to group `sudo' ...

Adding user hduser to group sudo

Done.

Giving “hduser” appropriate rights

root@xu4_1:~# parallel-ssh -i -h hadoop_cluster.txt -l root -A "usermod -aG sudo hduser"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 11:53:35 [SUCCESS] 10.50.3.11

[2] 11:53:35 [SUCCESS] 10.50.3.12

[3] 11:53:35 [SUCCESS] 10.50.3.13

[4] 11:53:35 [SUCCESS] 10.50.3.14

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 76

[5] 11:53:35 [SUCCESS] 10.50.3.15

Allowing “hduser “ to access all the cluster nodes without password request:

root@xu4_1:~# su hduser

hduser@xu4_1:/root$ cd

hduser@xu4_1:~$ ssh-keygen -t rsa -P ""

hduser@xu4_1:~$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

hduser@xu4_1:~$ ssh hduser@localhost

The authenticity of host 'localhost (::1)' can't be established.

ECDSA key fingerprint is SHA256:oKt67r3/uarmzOGNpXBAHq/0yzIfK7c0BUx8UZdtC50.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 3.10.105-141 armv7l)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

0 packages can be updated.

0 updates are security updates.

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo_root" for details.

hduser@xu4_1:~$ exit

logout

Connection to localhost closed.

hduser@xu4_1:~$ ssh hduser@master0

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 77

The authenticity of host 'master0 (10.50.3.11)' can't be established.

ECDSA key fingerprint is SHA256:oKt67r3/uarmzOGNpXBAHq/0yzIfK7c0BUx8UZdtC50.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'master0,10.50.3.11' (ECDSA) to the list of known hosts.

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 3.10.105-141 armv7l)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

0 packages can be updated.

0 updates are security updates.

Last login: Thu Jul 5 12:09:22 2018 from ::1

To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo_root" for details.

hduser@xu4_1:~$

hduser@xu4_1:~$ ssh-copy-id hduser@slave1

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/hduser/.ssh/id_rsa.pub"

The authenticity of host 'slave1 (10.50.3.12)' can't be established.

ECDSA key fingerprint is SHA256:AhZViMThWYyS7/IkOJEGZT9+EhAj7+lPxfzd+h/UBDo.

Are you sure you want to continue connecting (yes/no)? yes

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already
installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new
keys

hduser@slave1's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'hduser@slave1'"

and check to make sure that only the key(s) you wanted were added.

Testing ssh acces without password on slave1

ssh hduser@slave1

repeat the ssh-copy-id on all the slaves and test the access.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 78

Create the data folder by parallel-ssh

root@xu4_1:~# parallel-ssh -i -h hadoop_cluster.txt -l root -A "mkdir -p /data/hdfs/tmp"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 12:19:02 [SUCCESS] 10.50.3.11

[2] 12:19:03 [SUCCESS] 10.50.3.12

[3] 12:19:03 [SUCCESS] 10.50.3.13

[4] 12:19:03 [SUCCESS] 10.50.3.15

[5] 12:19:03 [SUCCESS] 10.50.3.14

Changing the owner of data folder

root@xu4_1:~# parallel-ssh -i -h hadoop_cluster.txt -l root -A "chown -R hduser:hadoop /data/hdfs"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 12:20:29 [SUCCESS] 10.50.3.11

[2] 12:20:29 [SUCCESS] 10.50.3.12

[3] 12:20:29 [SUCCESS] 10.50.3.13

[4] 12:20:29 [SUCCESS] 10.50.3.14

[5] 12:20:29 [SUCCESS] 10.50.3.15

7.4.3 Installing and deploying Hadoop software

Download the Hadoop software from diybigdata.net repository

cd /opt

wget http://diybigdata.net/downloads/hadoop/hadoop-2.7.2.armhf.tar.gz

Unpack the Hadoop package in the /opt directory. I also like creating a symlink to the install from the
/usr/local directory. On the master node:

root@xu4_1:~# cd /opt

root@xu4_1:/opt# tar xzf hadoop-2.7.2.armhf.tar.gz

root@xu4_1:/opt# chown -R hduser:hadoop hadoop-2.7.2

root@xu4_1:/opt# cd /usr/local

root@xu4_1:/usr/local# ln -s /opt/hadoop-2.7.2 hadoop

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 79

The next step is to configure the Hadoop installation on the master node. This requires editing sever-
al configuration files found in the /usr/local/hadoop/etc/hadoop directory. The contents of the files is post-
ed to the GitHub repository for the ODROID CU4 cluster project [22].

These changes tell Hadoop where it can find the Java libraries and sets the default heap size. Since
our devices have 2 GB of RAM and we want to save as much RAM as possible for an Apache Spark install
later, we are limiting Hadoop’s heap to 384 MB [22].

vi etc/hadoop/hadoop-env.sh

Adjust the following two lines to match what is shown:

export JAVA_HOME=$(readlink -f /usr/bin/java | sed "s:bin/java::")

export HADOOP_HEAPSIZE=384

vi etc/hadoop/core-site.xml

Insert following lines between <configuration></configuration> tags

<property>

 <name>hadoop.tmp.dir</name>

 <value>/data/hdfs/tmp</value>

 <description>Where Hadoop will place all of its working files</description>

 </property>

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://master:9000</value>

 <description>Where HDFS NameNode can be found on the network</description>

 </property>

 <property>

 <name>hadoop.proxyuser.hduser.groups</name>

 <value>*</value>

 <description>

 What user groups are allow to connect to the HDFS proxy.

 * for all.

</description>

 </property>

 <property>

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 80

 <name>hadoop.proxyuser.hduser.hosts</name>

 <value>*</value>

 <description>

 What user hosts are allow to connect to the HDFS proxy.

 * for all.

 </description>

</property>

To configure HDFS component edit hdfs-site.xml:

vi etc/hadoop/hdfs-site.xml

Add the following values between the <configuration></configuration> tags.

<property>

 <name>dfs.replication</name>

 <value>2</value>

 <description>The default replication factor of files on HDFS</description>

 </property>

 <property>

 <name>dfs.block.size</name>

 <value>16777216</value>

 <description>The default block size in bytes of data saved to HDFS</description>

 </property>

 <property>

 <name>dfs.namenode.rpc-bind-host</name>

 <value>0.0.0.0</value>

 <description>

 controls what IP address the NameNode binds to.

 0.0.0.0 means all available.

 </description>

 </property>

 <property>

 <name>dfs.namenode.servicerpc-bind-host</name>

 <value>0.0.0.0</value>

 <description>

 controls what IP address the NameNode binds to.

 0.0.0.0 means all available.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 81

 </description>

 </property>

 <property>

 <name>dfs.namenode.http-bind-host</name>

 <value>0.0.0.0</value>

 <description>

 controls what IP address the NameNode binds to.

 0.0.0.0 means all available.

 </description>

 </property>

 <property>

 <name>dfs.namenode.https-bind-host</name>

 <value>0.0.0.0</value>

 <description>

 controls what IP address the NameNode binds to.

 0.0.0.0 means all available.

 </description>

 </property>

 <property>

 <name>nfs.dump.dir</name>

 <value>/tmp/.hdfs-nfs</value>

 <description>A temporary working directory for files coming into the HDFS
proxy.</description>

 </property>

 <property>

 <name>nfs.metrics.percentiles.intervals</name>

 <value>100</value>

 <description>

 Enable the latency histograms for read, write and commit requests.

 The time unit is 100 seconds in this example.

 </description>

 </property>

 <property>

 <name>nfs.exports.allowed.hosts</name>

 <value>* rw</value>

 <description>Host permissions for connecting to the proxy.</description>

 </property>

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 82

 <property>

 <name>dfs.permissions</name>

 <value>true</value>

 <description>Enforce permissions</description>

 </property>

 <property>

 <name>dfs.permissions.supergroup</name>

 <value>hadoop</value>

 <description>The name of the group of Hadoop super-users.</description>

 </property>

To configure the Map-Reduce component, edit mapred-site.xml:

cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml

vi etc/hadoop/mapred-site.xml

Add the following values between the <configuration></configuration> tags. Note that many of
these configurations items control the memory allocated during a map-reduce job.

<property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

 <property>

 <name>mapreduce.map.memory.mb</name>

 <value>256</value>

 </property>

 <property>

 <name>mapreduce.reduce.memory.mb</name>

 <value>384</value>

 </property>

 <property>

 <name>mapreduce.map.java.opts</name>

 <value>-Xmx192m</value>

 </property>

 <property>

 <name>mapreduce.reduce.java.opts</name>

 <value>-Xmx256m</value>

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 83

 </property>

 <property>

 <name>mapreduce.job.tracker</name>

 <value>master:5431</value>

 </property>

 <property>

 <name>yarn.app.mapreduce.am.resource.mb</name>

 <value>512</value>

</property>

To configure the resource manager YARN, edit yarn-site.xml:

vi etc/hadoop/yarn-site.xml

Add the following values between the <configuration></configuration> tags. Note that many of
these configurations items control the memory allocated during a map-reduce job.

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

 <property>

 <name>yarn.nodemanager.resource.memory-mb</name>

 <value>512</value>

 </property>

 <property>

 <name>yarn.scheduler.minimum-allocation-mb</name>

 <value>128</value>

 </property>

 <property>

 <name>yarn.nodemanager.vmem-check-enabled</name>

 <value>false</value>

 <description>Whether virtual memory limits will be enforced for containers</description>

 </property>

 <property>

 <name>yarn.nodemanager.vmem-pmem-ratio</name>

 <value>4</value>

 <description>

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 84

 Ratio between virtual memory to physical memory when setting memory

 limits for containers

 </description>

 </property>

 <property>

 <name>yarn.resourcemanager.resource-tracker.address</name>

 <value>master:8025</value>

 </property>

 <property>

 <name>yarn.resourcemanager.scheduler.address</name>

 <value>master:8035</value>

 </property>

 <property>

 <name>yarn.resourcemanager.address</name>

 <value>master:8050</value>

</property>

Create and edit the masters and slaves files:

vi etc/hadoop/masters

Add line

master0

vi etc/hadoop/slaves

Add lines

master

slave1

slave2

slave3

slave4

Deploy software and settings on all slaves

root@xu4_1:~# parallel-ssh -i -h hadoop_slaves.txt -l root -A "mkdir -p /opt/hadoop-2.7.2/"

Warning: do not enter your password if anyone else has superuser

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 85

privileges or access to your account.

Password:

[1] 12:53:06 [SUCCESS] 10.50.3.12

[2] 12:53:06 [SUCCESS] 10.50.3.13

[3] 12:53:06 [SUCCESS] 10.50.3.14

[4] 12:53:06 [SUCCESS] 10.50.3.15

rsync -avxP /opt/hadoop-2.7.2/ root@slave1:/opt/hadoop-2.7.2/

rsync -avxP /opt/hadoop-2.7.2/ root@slave2:/opt/hadoop-2.7.2/

 rsync -avxP /opt/hadoop-2.7.2/ root@slave3:/opt/hadoop-2.7.2/

rsync -avxP /opt/hadoop-2.7.2/ root@slave4:/opt/hadoop-2.7.2/

root@xu4_1:~# parallel-ssh -i -h hadoop_slaves.txt -l root -A "chown -R hduser:hadoop /opt/hadoop-2.7.2/"
Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 13:02:46 [SUCCESS] 10.50.3.14

[2] 13:02:46 [SUCCESS] 10.50.3.12

[3] 13:02:46 [SUCCESS] 10.50.3.13

[4] 13:02:46 [SUCCESS] 10.50.3.15

On the master0 node the .bashrc file for “hduser” need to be adapted with Hadoop path:

su hduser

vi ~/.bashrc

Add this line at the end:

export PATH=$PATH:/usr/local/hadoop/sbin:/usr/local/hadoop/bin

7.5 ACTIVATION OF HADOOP CLUSTER

The settings and software deployment should be done now. Logging on the master0 node as “hduser” the
hdfs will be formatted:

hdfs namenode -format

To start HDFS the command is

hduser@xu4_1:/root$ /usr/local/hadoop/sbin/start-dfs.sh

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 86

Starting namenodes on [master]

master: starting namenode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-namenode-xu4_1.out

master0: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_1.out

slave1: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_2.out

slave3: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_4.out

slave2: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_3.out

slave4: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_5.out

hdfs dfs -mkdir -p /user/wisegrid

To stop HDFS

hduser@xu4_1:/root$ stop-dfs.sh

Stopping namenodes on [master]

master: stopping namenode

master0: stopping datanode

slave1: stopping datanode

slave2: stopping datanode

slave4: stopping datanode

slave3: stopping datanode

7.6 INSTALLATION OF APACHE SPARK SOFTWARE

The Apache SPARK application is a modern tool used for data analytics.

7.6.1 Prerequisites to SPARK installation

To be ready for Apache SPARK installation some folders should be created on all nodes of the cluster

root@xu4_1:~# parallel-ssh -i -h hadoop_cluster.txt -l root -A "mkdir -p /data/spark"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 13:25:29 [SUCCESS] 10.50.3.11

[2] 13:25:29 [SUCCESS] 10.50.3.12

[3] 13:25:29 [SUCCESS] 10.50.3.13

[4] 13:25:29 [SUCCESS] 10.50.3.14

[5] 13:25:29 [SUCCESS] 10.50.3.15

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 87

root@xu4_1:~# parallel-ssh -i -h hadoop_cluster.txt -l root -A "chown hduser:hadoop /data/spark"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 13:26:49 [SUCCESS] 10.50.3.11

[2] 13:26:49 [SUCCESS] 10.50.3.12

[3] 13:26:49 [SUCCESS] 10.50.3.13

[4] 13:26:49 [SUCCESS] 10.50.3.14

[5] 13:26:49 [SUCCESS] 10.50.3.15

On all nodes python3 should be installed. If is not installed by default, run this command as root on each
node:

apt-get install python3

7.6.2 Installation of Apache SPARK software

The Apache Spark software can be download from a DIY Big Data repository. The download will be done on
master0 node.

cd /opt

wget http://diybigdata.net/downloads/spark/spark-2.1.0-bin-hadoop2.7-double-alignment.tgz

tar xvzf spark-2.1.0-bin-hadoop2.7-double-alignment.tgz

chown -R hduser:hadoop spark-2.1.0-bin-v2.1.0-double-alignment

ln -s /opt/spark-2.1.0-bin-v2.1.0-double-alignment /usr/local/spark

Settings for SPARK software to be done on master0 node:

cd /usr/local/spark/conf

cp spark-env.sh.template spark-env.sh

vi spark-env.sh

Add following lines in the file

PYSPARK_PYTHON=python3

PYTHONHASHSEED=12121969

SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

SPARK_LOCAL_DIRS=/data/spark

SPARK_WORKER_MEMORY=1300M

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 88

SPARK_WORKER_CORES=3

SPARK_DAEMON_JAVA_OPTS="-Dspark.worker.timeout=600 -Dspark.akka.timeout=200 -
Dspark.shuffle.consolidateFiles=true"

SPARK_JAVA_OPTS="-Dspark.worker.timeout=600 -Dspark.akka.timeout=200 -
Dspark.shuffle.consolidateFiles=true"

Next, we need to set up the defaults configuration values that Spark uses.

cp spark-defaults.conf.template spark-defaults.conf

vi spark-defaults.conf

Add the following lines to the file:

spark.master spark://master:7077

spark.serializer org.apache.spark.serializer.KryoSerializer

spark.executor.memory 1000M

spark.driver.memory 1000M

spark.io.compression.codec lz4

spark.driver.cores 2

spark.executor.cores 2

Finally, is needed to tell spark where the slave nodes are.

cp slaves.template slaves

vi slaves

Then add the name of each slave to the end of the file:

Slave1

Slave2

Slave3

Slave4

7.6.3 Deployment of SPARK software and settings on all slaves

For deploying the software and settings parallel-ssh and rsync will be used

root@xu4_1:~# parallel-ssh -i -h hadoop_slaves.txt -l root -A "mkdir -p /opt/spark-2.1.0-bin-v2.1.0-double-
alignement"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 89

Password:

[1] 13:40:22 [SUCCESS] 10.50.3.12

[2] 13:40:22 [SUCCESS] 10.50.3.13

[3] 13:40:22 [SUCCESS] 10.50.3.14

[4] 13:40:22 [SUCCESS] 10.50.3.15

rsync -avxP /opt/spark-2.1.0-bin-v2.1.0-double-alignment root@slave1:/opt/

rsync -avxP /opt/spark-2.1.0-bin-v2.1.0-double-alignment root@slave2:/opt/

rsync -avxP /opt/spark-2.1.0-bin-v2.1.0-double-alignment root@slave3:/opt/

rsync -avxP /opt/spark-2.1.0-bin-v2.1.0-double-alignment root@slave4:/opt/

root@xu4_1:~# parallel-ssh -i -h hadoop_slaves.txt -l root -A "chown -R hduser:hadoop /opt/spark-2.1.0-
bin-v2.1.0-double-alignment"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 13:46:01 [SUCCESS] 10.50.3.12

[2] 13:46:01 [SUCCESS] 10.50.3.13

[3] 13:46:01 [SUCCESS] 10.50.3.14

[4] 13:46:01 [SUCCESS] 10.50.3.15

root@xu4_1:~# parallel-ssh -i -h hadoop_slaves.txt -l root -A "ln -s /opt/spark-2.1.0-bin-v2.1.0-double-
alignment /usr/local/spark"

Warning: do not enter your password if anyone else has superuser

privileges or access to your account.

Password:

[1] 13:48:02 [SUCCESS] 10.50.3.12

[2] 13:48:02 [SUCCESS] 10.50.3.13

[3] 13:48:02 [SUCCESS] 10.50.3.14

[4] 13:48:02 [SUCCESS] 10.50.3.15

7.6.4 Activation of SPARK software

For activating the spark software login on mastero on “hduser” user and use the command:

hduser@xu4_1:/root$ /usr/local/hadoop/sbin/start-dfs.sh

Starting namenodes on [master]

master: starting namenode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-namenode-xu4_1.out

master0: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_1.out

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 90

slave4: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_5.out

slave3: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_4.out

slave2: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_3.out

slave1: starting datanode, logging to /opt/hadoop-2.7.2/logs/hadoop-hduser-datanode-xu4_2.out

Starting secondary namenodes [0.0.0.0]

0.0.0.0: secondarynamenode running as process 8140. Stop it first.

hduser@xu4_1:/root$ /usr/local/spark/sbin/start-all.sh

starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.master.Master-1-xu4_1.out

slave4: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.worker.Worker-1-xu4_5.out

slave3: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.worker.Worker-1-xu4_4.out

slave2: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.worker.Worker-1-xu4_3.out

slave1: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.worker.Worker-1-xu4_2.out

localhost: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hduser-
org.apache.spark.deploy.worker.Worker-1-xu4_1.out

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 91

8 APACHE HADOOP CONNECTION WITH THE MONGODB CONECTOR

The connection between the MongoDB database and Hadoop + Spark framework is provided by a
MongoDB Connector for Hadoop. The installation of the connector is based by the MongoDB manual pag-
es dedicated to Apache Hadoop connections [23] and Wiki pages on the same subject [24].

The MongoDB also defines some very interesting use cases about the integration between Mon-
goDB, Hadoop and user application. The use cases are:

 Batch aggregation

In several scenarios the built-in aggregation functionality provided by MongoDB is sufficient for an-
alysing your data. However, in certain cases, significantly more complex data aggregation may be neces-
sary. This is where Hadoop can provide a powerful framework for complex analytics [25].

In this scenario data is pulled from MongoDB and processed within Hadoop via one or more
MapReduce jobs. Data may also be brought in from additional sources within these MapReduce jobs to de-
velop a multi-data source solution. Output from these MapReduce jobs can then be written back to Mon-
goDB for later querying and ad-hoc analysis. Applications built on top of MongoDB can now use the infor-
mation from the batch analytics to present to the end user or to drive other downstream features [25].

Figure 27 – Hadoop MongoDB batch aggregation [25]

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 92

 Data Warehouse
In a typical production scenario, your application’s data may live in multiple datastores, each with

their own query language and functionality. To reduce complexity in these scenarios, Hadoop can be used
as a data warehouse and act as a centralized repository for data from the various sources.

In this situation, you could have periodic MapReduce jobs that load data from MongoDB into Ha-
doop. This could be in the form of “daily” or “weekly” data loads pulled from MongoDB via MapReduce.
Once the data from MongoDB is available from within Hadoop, and data from other sources are also avail-
able, the larger dataset data can be queried against. Data analysts now have the option of using either
MapReduce or Pig to create jobs that query the larger datasets that incorporate data from MongoDB [25].

Figure 28 – MongoDB Hadoop Data Warehouse [25]

 ETL Data

MongoDB may be the operational datastore for your application but there may also be other
datastores that are holding your organization’s data. In this scenario it is useful to be able to move data
from one datastore to another, either from your application’s data to another database or vice versa.
Moving the data is much more complex than simply piping it from one mechanism to another, which is
where Hadoop can be used.

In this scenario, Map-Reduce jobs are used to extract, transform and load data from one store to
another. Hadoop can act as a complex ETL mechanism to migrate data in various forms via one or more
MapReduce jobs that pull the data from one store, apply multiple transformations (applying new data
layouts or other aggregation) and loading the data to another store. This approach can be used to move
data from or to MongoDB, depending on the desired result [25].

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 93

Figure 29 – Hadoop ETL from MongoDB [25]

Figure 30 – Hadoop ETL to MongoDB [25]

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 94

8.1 INSTALLATION OF HADOOP MONGODB CONNECTOR

MongoDB connector for Hadoop is a java written plugin for Hadoop that provides the ability for Ha-
doop to use MongoDB as an input source and also an output destination.

The steps for installing:

 Obtain the Hadoop connector. The JARs can be downloaded from from the Maven Central
Repository http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/. The JARs are
universal and will work with any version of Hadoop.

 Obtain a JAR for the MongoDB Java Driver http://mongodb.github.io/mongo-java-
driver/?jmp=docs&_ga=2.76560725.1338393439.1531580407-
1387601032.1514913385&_gac=1.220448044.1531315453.EAIaIQobChMIstzwx5KX3AIVSKt
3Ch08sQyYEAEYASAAEgKhofD_BwE .

 Move these JARs onto each node of the Hadoop cluster. On each node the jars must be
placed somewhere on Hadoop’s CLASSPATH (e.g. $HA-
DOOP_PREFIX/share/hadoop/common), or you can use the Hadoop Distributed Cache to
move the JARs onto pre-existing nodes.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 95

9 CONNECTION OF APPLICATIONS TO MONGODB CLUSTER

9.1 APPLICATION INTERACTIONS FROM WISEGRID APPLICATIONS TO THE BIG DATA PLAT-
FORM

In this chapter the interactions between different applications to the Big Data platform are described
for each applications. Some parts in this chapter are also available in D5.1 [1] and are here also for an easy
understanding of this chapters.

9.1.1 Databases created in lab testing phase

In lab testing phase for the MongoDB cluster the WiseGRID application created databases and
stored data. The databases created can be seen in the following picture:

Figure 31 – Databases created in lab testing phase

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 96

9.1.2 Big data interactions from WG IOP application

9.1.2.1 Short application description

The WiseGRID Interoperable Platform (WG IOP) is a scalable, secure and open ICT platform, with in-
teroperable interfaces, for real-time monitoring and decentralized control to support effective operation of
the energy network. The objective of the platform is to manage and process the heterogeneous and mas-
sive data streams coming from the distributed energy infrastructure deployed. This platform enable new
services and reduce ICT costs for prosumers and smaller players, whilst it will facilitate cross-network and
cross-entity interoperability. In order to increase adoption and speed up deployment, this platform have
open interfaces to the relevant energy, IoT and Smart City standards. WG IOP enable the cooperation and
synergies among the different actors targeted by the different WiseGRID technological solutions. The core
of the architecture is represented by a Message Broker (RabbitMQ message broker has been adopted) by
which all message are flowing, the broker is agnostic about the content of the message and its structure, by
several micro-services that mainly facilitate the integration of different kind of assets with the the WiseGrid
tools and services and by a security module to ensure that all the flow exchanged via the WG IOP are se-
cured and all the operation authorized.

9.1.2.2 Interface with Big Data platform

As detailed in the D4.2 “WiseGRID interoperable Platform Process (WG IOP)”, the WG IOP does not
directly access the big data platform, it like a bridge permit the exchange of data that are retrieved or
stored by external services (DB interaction services) and WiseGRID tools like the WG RESCO or WG Cockpit
and so on from an to the Big Data Platform DB instances. The next image show the WG IOP architecture in
which it is possible to identify the interaction with the Big Data platform directly by each tools or external
services.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 97

Figure 32 – WG IOP Architecture

9.1.3 Big data interactions from WG Cockpit application

9.1.3.1 Short application description

WiseGRID Cockpit is the WiseGRID technological solution targeting DSOs and microgrid operators, allowing
them to control, manage and monitor their own grid, improving flexibility, stability and security of their
net-work. Taking into account the goals of the project, the features to be implemented within WiseGRID
cockpit consider a scenario of increasing share of distributed renewable resources and services provided by
communities of prosumers (aggregated in the form of VPPs or cooperatives in order to achieve higher
participation and environmental, social and economic benefits).

The main purpose of the WiseGRID Cockpit is to enable DSOs to manage the fundamental changes that

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 98

distribution grids are facing nowadays, some remarkable ones of those being the transition towards a grid
with high penetration of distributed renewable energy resources and the presence of additional significant
loads coming from electric vehicles among others. In addition, this particular outcome of the WiseGRID
project aims at approaching the benefits that new technologies (such as big data or unbundled smart
meters) and algorithms (such as state estimation or fault detection) bring to the operation of the grid.
Finally, since one of the objectives of the project is the empowerment of the citizens in the energy field, the
WiseGRID Cockpit will also demonstrate how that empowerment can be beneficial for several actors -
including DSOs -, and how the whole ecosystem of actors can contribute to reach an environmentally and
economically sustainable energy system.

Figure 33 - WiseGRID Cockpit

9.1.3.2 Interface with Big Data platform

The big data platform will be used by the WiseGRID Cockpit in order to hold the history of data provided by
the sensors of interest of the application. As depicted in the architecture of the WG Cockpit, the main data
sources for this information are:
• Unbundled Smart Meters, providing readings with high frequency (up to every 10 seconds)
• Advanced Metering Infrastructure systems, retrieving data from already deployed Smart Meters –
usually hourly curves retrieved once a day
• SCADA systems, retrieving real-time electric measurements from monitored infrastructure under
control of the DSO (buses of the distribution grid) and status of safety elements
This data will flow from the source devices/systems, through the WiseGRID IOP Message Broker into the
WiseGRID Cockpit application. The Real-Time Monitor module is in charge of subscribing to the correspond-
ing flows of data and store it to the long-term database, hosted by the big data platform.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 99

Figure 34 – WG Cockpit interface with Big Data platform

The RT monitor module is, therefore, the module which, inside the WG Cockpit application, implements the
bridge between the live data flow started by the field devices and the big-data platform.
On the other hand, the WiseGRID Cockpit will use the Data mining and analytics module of the big data
platform to process the historic data in order to calculate KPIs. These calculations will be scheduled as regu-
lar Spark jobs to be executed by the big data platform, which will process the information to obtain:
• Hourly/Daily/Monthly aggregated data to produce summaries of interest to the DSO operator (en-
ergy imported from HV grid, energy produced)
• Statistical data (average, normal deviation) on electric parameters affecting quality of the service
(frequency, voltage)
These jobs appear in the architecture of the WiseGRID Cockpit as KPI engine module. Results of this calcula-
tion will be stored back to different collections of the long-term database but may also be stored into the
operational database (which holds information about the current status of the grid and a short-term win-
dow of data) and published to the internal Enterprise Service Bus if required by other modules.

Figure 35 – WG Cockpit data mining

As part of the implementation and lab-testing task, the real-time monitor module of the WiseGRID Cockpit
application has been configured to store all data produced within the lab environment in the MongoDB
cluster developed in this work package. This implied the creation of one database hosting the collections
specified below.

Table 8 –Collections in WG Cockpit database

Collection Description

wgcockpit_config Registry of changes in the configuration of the SMXs (smart
meters)(Registration upon changes)

wgcockpit_values History of readouts provided by the smart meters (1 readout every 10 seconds)

wgcockpit_weather Actual weather history at the location of the corresponding pilot site (1 register
every hour)

wgcockpit_weatherforecast History of weather forecasts at the location of the corresponding pilot site (12
registers every hour)

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 100

Details about the database created by the WiseGRID Cockpit in the lab testing phase can be seen in the
following picture.

Figure 36 – Collections inside the WG Cockpit database

Documents from wgcockpit_config collection stored during lab testing phase are in the following picture:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 101

Figure 37 – Documents stored in the wgcockpit_config collection

In order to take advantage of the capabilities of the clustered database, the collections need to be sharded,
so data is actually distributed among the different nodes of the cluster. The advantages of this
configuration are described in detail in D5.1 [1]. The most important point when applying this configuration
is defining the proper shard key for the collection, which is used to automatically create partitions among
data that are stored at different nodes. As explained in MongoDB official documentation, the shard key
determines the distribution of the collection's documents among the cluster's shards. The shard key is either
an indexed field or indexed compound fields that exists in every document in the collection [26].

In the case of WiseGRID Cockpit, tests have been carried out with the wgcockpit_values collection, the one
holding one reading every 10 seconds per devices. The selected shard key was {mRID:1, timestamp:1}. By
including the ID of the devices, it is assured that measures of different devices are candidates to be
separated in different clusters. Since the collection contains historical readout data, timestamp was also
chosen to be included in the shard key in order to promote the separation of the data accordingly to the
periods in time they refer to. Results of this configuration are shown below:

db.getCollection('wgcockpit_values').getShardDistribution()

Shard rs0 at rs0/sh0r0:27017,sh0r1:27017

 data : 601.8MiB docs : 795251 chunks : 20

 estimated data per chunk : 30.08MiB

 estimated docs per chunk : 39762

Shard rs1 at rs1/sh1r0:27017,sh1r1:27017

 data : 567.13MiB docs : 550909 chunks : 22

 estimated data per chunk : 25.77MiB

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 102

 estimated docs per chunk : 25041

Shard rs2 at rs2/sh2r0:27017,sh2r1:27017

 data : 681.75MiB docs : 1495388 chunks : 22

 estimated data per chunk : 30.98MiB

 estimated docs per chunk : 67972

Totals

 data : 1.8GiB docs : 2841548 chunks : 64

 Shard rs0 contains 32.51% data, 27.98% docs in cluster, avg obj size on

shard : 793B

 Shard rs1 contains 30.64% data, 19.38% docs in cluster, avg obj size on

shard : 1KiB

 Shard rs2 contains 36.83% data, 52.62% docs in cluster, avg obj size on

shard : 478B

It can be observed that the shard key works as expected, distributing 1.8GB of data approximately equally
among the three nodes. In addition, the logs show how the shards are replicated (sh0r0/sh0r1,
sh1r0/sh1r1, sh2r0/sh2r1), thus increasing the availability of the data in the cluster in case of
failure.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 103

9.1.4 Big data interactions from WiseCORP application

9.1.4.1 Short application description

WiseCORP is the WiseGRID technological solution targeting businesses, industries, ESCOs and public
facility consumers and prosumers, with the objective of providing them the necessary mechanisms to
become smarter energy players. By means of energy usage monitoring and analysis, proper information can
be given to facility managers helping them to reduce energy costs and environmental impact.

A key factor towards achieving these objectives is a proper retrieval and analysis of energy usage
data, and visualization of meaningful information extracted from it. This information may include:

• Detailed visualization of energy demand at different areas of the building, helping facility
managers to identify opportunities for enhancing energy efficiency.

• Energy tariff comparison, enabling a direct economic cost reduction by shifting to a more
adequate tariff.

• Energy demand forecast, enabling medium to long term cost estimations and supporting
operative decisions about the usage of the facilities.

• Demand flexibility estimation, allowing the execution of optimization algorithms that will - either
automatically or by providing advices - shift demand in order to minimize economic costs - by
maximizing self-consumption or moving demand to off-peak periods - or minimize environmental
impact - by shifting demand to periods where green energy is available.

Figure 38 – WiseCORP

9.1.4.2 Interface with Big Data platform

The big data platform will be used by the WiseCORP in order to hold the history of data provided by the
different elements of interest of the application. As depicted in the architecture of the WiseCORP, the main
data sources for this information are:

 Unbundled Smart Meters, providing readings with high frequency (up to every 10 seconds).

 Advanced Metering Infrastructure systems from the DSO, retrieving data from already deployed

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 104

Smart Meters – usually hourly curves retrieved once a day.

 Storage systems.

 CHP devices, publishing their operation setpoint.

 HVAC devices, publishing their operation setpoint.

 Sensors for measuring indoor conditions, mainly temperature.

This data will flow from the source devices/systems, through the WG IOP Message Broker into the
WiseCORP application. The Real-Time Monitor module is in charge of subscribing to the corresponding
flows of data and store it to the long-term database, hosted by the big data platform.

Figure 39 – WiseCORP interface with Big Data platform

The RT monitor module is, therefore, the module which, inside the WiseCORP application, implements
the bridge between the live data flow started by the field devices and the big-data platform.

On the other hand, the WiseCORP will use the Data mining and analytics module of the big data
platform to process the historic data in order to calculate KPIs. These calculations will be scheduled as
regular Spark jobs to be executed by the big data platform, which will process the information to obtain:

 Hourly/Daily/Monthly aggregated data to produce summaries of interest to the ESCO or facility
manager (demand, production).

 Analysis of the demand (according to source, tariff period, self-consumption capabilities)

 Analysis of the used capacity (histograms of active power).

These jobs appear in the architecture of the WiseCORP as KPI engine module. Results of this calculation
will be stored back to different collections of the long-term database but may also be stored into the
operational database (which holds information about the current status of the grid and a short-term
window of data), or republished to the internal ESB with the objective of making certain KPIs accessible to
other modules of the application.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 105

Figure 40 – WiseCORP data mining

As part of the implementation and lab-testing task, the real-time monitor module of the WiseCORP
application has been configured to store all data produced within the lab environment in the MongoDB
cluster developed in this work package. This implied the creation of one database hosting the collections
specified below.

Table 9 – Wisecorp database collections

Collection Description

Wisecorp_assetsstatus History of status sent by the different sensors of the buildings
(temperature, lighting, smart plug demand, HVAC setpoints)

Wisecorp_batteries History of status/setpoints sent by the batteries of the buildings
(SoC, setpoint, state of health…) (1 register every 10 seconds)

Wisecorp_energymix Actual energy mix history at the location of the corresponding pilot
site (1 register every hour)

Wisecorp_energymixforecast History of energy mix forecasts at the location of the corresponding
pilot site (46 registers every hour)

Wisecorp_weather Actual weather history at the location of the corresponding pilot
site (1 register every hour)

Wisecorp_weatherforecast History of weather forecasts at the location of the corresponding
pilot site (12 registers every hour)

Collections from the WG_CORP database used during the lab testing phase are in the following picture:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 106

Figure 41 – Details of the WG_Corp database

In order to take advantage of the capabilities of the clustered database, the collections need to be sharded,
so data is actually distributed among the different nodes of the cluster. The advantages of this
configuration are described in detail in D5.1 [1]. The most important point when applying this configuration
is defining the proper shard key for the collection, which is used to automatically create partitions among
data that are stored at different nodes. As explained in MongoDB official documentation, the shard key
determines the distribution of the collection's documents among the cluster's shards. The shard key is either
an indexed field or indexed compound fields that exists in every document in the collection [26].

In the case of WiseGRID Cockpit, tests have been carried out with the wisecorp_assetsstatus and
wisecorp_batteries collections, the ones holding the history of status and setpoints of the assets in the
building. The selected shard key for both is similar {id:1, [capture|updated]time:1}. By including the ID of
the devices, it is assured that measures of different devices are candidates to be separated in different
clusters. Since the collection contains historical readout data, timestamps were also chosen to be included
in the shard key in order to promote the separation of the data accordingly to the periods in time they refer
to. Results of this configuration are shown below:

db.getCollection('wisecorp_batteries').getShardDistribution()

Shard rs1 at rs1/sh1r0:27017,sh1r1:27017

 data : 19.39MiB docs : 37574 chunks : 1

 estimated data per chunk : 19.39MiB

 estimated docs per chunk : 37574

Totals

 data : 19.39MiB docs : 37574 chunks : 1

 Shard rs1 contains 100% data, 100% docs in cluster, avg obj size on

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 107

shard : 541B

In this case, it can be observed that the volume of data in the lab-testing environment at the time of writing
is not enough to really activate the redistribution of the data among the shards of the cluster. In this case,
the logs still show how the shards are replicated (sh1r0/sh1r1), thus increasing the availability of the
data in the cluster in case of failure.

9.1.5 Big data interactions from WiseCOOP application

9.1.5.1 Short application description

WiseCOOP is the WiseGRID technological solution targeting aggregators of consumers and prosumers - par-
ticularly focused on domestic and small businesses -, supporting them in their roles of energy retailers, local
communities and cooperatives - which may have different objectives.

The main goal of the solution is helping consumers and prosumers to work together in order to achieve
better energy deals while relieving them from administrative procedures and cumbersome research. In the
particular scenario of increasing share of distributed renewable resources, this goal can be achieved by pur-
suing several objectives:

 Net-metering: supporting the operation of communities of prosumers that invest in renewable en-
ergy sources aiming at reducing their environmental impact

 Member profiling: clusters of consumers and prosumers with common energy usage patterns may
be identified, allowing the aggregator to negotiate special terms (as for instance energy tariffs) par-
ticularly beneficial for those groups

 Demand forecasting: by allowing aggregator (in its retailer role) to forecast the demand of its cus-
tomers, optimized purchase of energy at the wholesale market is enabled

 Tariff comparison: by offering members a tool for comparing their particular consumption with dif-
ferent available tariffs, those will have access to very valuable information to reduce their energy
bills

 Implicit price-based demand response towards modulating the overall demand of the group to
achieve a common objective (as, for instance, maximize usage of renewable energy sources pro-
duced within the group or minimize deviations between actual demand and energy purchased at
the wholesale market)

 Providing clear information to members to raise awareness on efficient energy usage and environ-
mental awareness

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 108

 Figure 42 – WiseCOOP

9.1.5.2 Interface with Big Data platform

The big data platform will be used by the WiseCOOP mainly with the objective of storing the history of
energy demand and production of the members of the portfolio aggregated by the organization using the
application. As depicted in the architecture of the WiseCOOP, the main data sources for this information
are:

 Unbundled Smart Meters, providing readings with high frequency (up to every 10 seconds).

 Advanced Metering Infrastructure systems from the DSO, retrieving data from already deployed
Smart Meters – usually hourly curves retrieved once a day.

This data will flow from the source devices/systems, through the WG IOP Message Broker into the
WiseCOOP application. The Real-Time Monitor module is in charge of subscribing to the corresponding
flows of data and store it to the long-term database, hosted by the big data platform.

WiseCOOP

BIG DATA PLATFORM

IOP

AMI wrapperAMI system

SMX

SMX

DLMS

DLMS

DLMS to CIM translator

CIMDLMS

Message broker

Smart meter
metering collector

AMI’s file system AMI’s file reader CIM formatterCustom format

CIM over MQTT RT MonitorCIM over MQTT

Long-term database

Figure 43 – WiseCOOP Big Data Platform interface

The RT monitor module is, therefore, the module which, inside the WiseCOOP application, implements
the bridge between the live data flow started by the field devices and the big-data platform.

On the other hand, the WiseCOOP will use the Data mining and analytics module of the big data
platform to process the historic data in order to calculate KPIs. These calculations will be scheduled as
regular Spark jobs to be executed by the big data platform, and will take advantage of the machine learning
capabilities of this framework, in order to process the following required information:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 109

 Aggregated data of interest to the manager of the aggregation of prosumers and to individual
prosumers

o Cumulative daily consumption in real-time

o Cumulative weekly consumption in real-time

o Cumulative monthly consumption in real-time

o Cumulative yearly consumption in real-time

o Cumulative energy consumption for the same calendar day of previous year

o Cumulative weekly energy consumption for the same week of previous year until corre-

sponding day

o Cumulative energy consumption for the same month of previous year until corresponding

day

o Cumulative energy consumption during the same previous year until corresponding day

o Cumulative energy consumption for the same day (24h) of previous year

o Cumulative energy consumption for the whole week (7 full days) of previous year

o Cumulative energy consumption for the full month of previous year

o Cumulative energy consumption during the entire previous year

 Profiling (classification) of prosumer portfolio according to characteristics of the demand (time
distribution, amount of demand, associated economic cost, associated environmental impact)

 Breakdown of portfolio demand/production according to contract type (domestic, tertiary)

These jobs appear in the architecture of the WiseCOOP as KPI engine module. Results of this calculation
will be stored back to different collections of the long-term database, but may also be stored into the
operational database (which holds information about the current status of the grid and a short-term
window of data), or republished to the internal ESB with the objective of making certain KPIs accessible to
other modules of the application.

WiseCOOP

BIG DATA PLATFORM

Long-term database

Data mining and analytics

KPI calculator

KPI calculator

KPI calculator

Operational database

Internal ESB

Figure 44 – WiseCOOP Big Data mining

As part of the implementation and lab-testing task, the real-time monitor module of the WiseCOOP
application has been configured to store all data produced within the lab environment in the MongoDB
cluster developed in this work package. This implied the creation of one database hosting the collections
specified below.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 110

Figure 45 – Details of WiseCOOP Database

Table 10 – WiseCOOP Database collections

Collection Description

Wisecoop_values History of readings reported by the smart meters
monitored used by WiseCOOP

Wisecoop_energymix Actual energy mix history at the location of the
corresponding pilot site (1 register every hour)

Wisecoop_energymixforecast History of energy mix forecasts at the location of
the corresponding pilot site (46 registers every
hour)

Wisecoop_weather Actual weather history at the location of the
corresponding pilot site (1 register every hour)

Wisecoop_weatherforecast History of weather forecasts at the location of the
corresponding pilot site (12 registers every hour)

In order to take advantage of the capabilities of the clustered database, the collections need to be sharded,
so data is actually distributed among the different nodes of the cluster. The advantages of this
configuration are described in detail in D5.1 [1]. The most important point when applying this configuration
is defining the proper shard key for the collection, which is used to automatically create partitions among
data that are stored at different nodes. As explained in MongoDB official documentation, the shard key
determines the distribution of the collection's documents among the cluster's shards. The shard key is either

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 111

an indexed field or indexed compound fields that exists in every document in the collection [26].

In the case of WiseGRID Cockpit, tests have been carried out with the wisecoop_values collection, the one
holding the history of reading of the smart meters. The selected shard key was {id:1, timestamp:1}. By
including the ID of the devices, it is assured that measures of different devices are candidates to be
separated in different clusters. Since the collection contains historical readout data, timestamps were also
chosen to be included in the shard key in order to promote the separation of the data accordingly to the
periods in time they refer to. Results of this configuration are shown below:

db.getCollection('wisecoop_values').getShardDistribution()

Shard rs1 at rs1/sh1r0:27017,sh1r1:27017

 data : 240.22MiB docs : 282602 chunks : 2

 estimated data per chunk : 120.11MiB

 estimated docs per chunk : 141301

Shard rs2 at rs2/sh2r0:27017,sh2r1:27017

 data : 1.73MiB docs : 756 chunks : 1

 estimated data per chunk : 1.73MiB

 estimated docs per chunk : 756

Totals

 data : 241.95MiB docs : 283358 chunks : 3

 Shard rs1 contains 99.28% data, 99.73% docs in cluster, avg obj size on

shard : 891B

 Shard rs2 contains 0.71% data, 0.26% docs in cluster, avg obj size on

shard : 2KiB

In this case, it can be observed that the volume of data in the lab-testing environment at the time of writing
has just reached the minimum to activate the redistribution of the data among the shards of the cluster. In
this case, the logs show how 2 of the shards are used (rs1 and rs2), even if the distribution of data among
them is not homogeneous. The logs still show how shards are replicated (sh1r0/sh1r1,
sh2r0/sh2r1), thus increasing the availability of the data in the cluster in case of failure.

9.1.6 Big data interactions from WiseHOME application

9.1.6.1 Short application description

WiseHome is an application used by the home users that are in the WiseCOOP framework structure
in order to get information of the status of their participation in WiseCOOP. WiseHOME interacts with
other application such as WiseCOOP and WG Staas/VPP trough WG IOP sending data requests and
generation simple and comprehensive graphic interface for the user accessible by a large type of devices as
computers and mobile devices.

9.1.6.2 Interface with Big Data platform

WG Home does not interact directly to the Big Data platform and is not storing any data in the long
term database from the Big Data Platform. WiseHome is using a small local SQL database in order to
process the user authentication data and data got from WG COOP and WG Staas/VPP. The interaction

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 112

diagram of WiseHOME to the other WiseGRID application is defined in the bellow diagram:

Figure 46 – WiseHOME Interaction Diagram

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 113

9.1.7 Big data interactions from WiseEVP application

9.1.7.1 Short application description

WiseEVP is the WiseGRID technological solution for

 Vehicle-sharing companies or electric vehicle fleet managers and

 Electric vehicle infrastructure (EVSE) operators

In order to optimize the activities related with smart charging and discharging of the EVs including V2G
(vehicle to grid, energy injection in the distribution network) and V2B (vehicle to building).

The management of the EVSEs charging and discharging processes will meet the following objectives:

 Reduce the EV charging energy bill.

 Follow flexibility requests from DSO to help the electric distribution network operation in exchange
for an economic compensation.

 Follow flexibility requests to increase injection of RES production reducing curtailment in exchange
for an economic consideration compensation.

 Contribute in the building energy management system with the main objectives of reducing the
energy bill and maximize local RES production.

All the aforementioned objectives will be subordinated to the EV user preferences: desired state of
charge (SOC) at the time of unplugging the EV.

Figure 47 – WiseEVP

9.1.7.2 Interface with Big Data platform

The big data platform will be used by the WiseEVP for storing the history of energy supplied or injected
by the different EVSEs, and hold the history of the parameters read out from the vehicles of the fleet, which
will be used for analyzing the usage of those and optimize the charging schemes. As depicted in the
architecture of the WiseEVP, the main data sources for this information are:

 Electric Vehicle Supply Equipment (EVSEs), providing readings of energy supplied (or injected under
V2G schemes) and the identification of the vehicle associated to these energy flows.

 Electric Vehicles (EVs), which will be monitored to regularly extract information to model their

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 114

usage (State of Charge, travelled distances, location, energy charged).

This data will flow from the source devices/systems, through the WiseGRID IOP Message Broker into the
WiseEVP application. Similarly to other applications, the Real-Time Monitor module is in charge of
subscribing to the corresponding flows of data and store it to the long-term database, hosted by the big
data platform.

WiseEVP

BIG DATA PLATFORM

IOP

EV Wrapper
Private fleet

monitoring system

EVSE

EVSE

OCPP1.6J

Message broker

Custom format

RT Monitor

Long-term database

EVSE Wrapper

Figure 48 – WiseEVP interface with Big Data platform

The RT monitor module is, therefore, the module which, inside the WiseEVP application,
implements the bridge between the live data flow started by the field devices and the big-data platform.

On the other hand, the WiseEVP will use the Data mining and analytics module of the big data platform
to process the historic data in order to calculate KPIs. These calculations will be scheduled as regular Spark
jobs to be executed by the big data platform, and will process the following required information:

 Analysis of energy supplied by EVSEs accordingly to their source

 Hourly/Daily/Monthly aggregations of energy demanded by the fleet

 Hourly/Daily/Monthly aggregations of energy supplied or injected back to the grid by the EVSEs

 Estimation of costs associated to energy demand (both economic and environmental impact)

 Comparison of costs with previous periods

 Analysis of battery health of the EVs of the fleet (trends in energy/distance component)

These jobs appear in the architecture of the WiseEVP as KPI engine module. Results of this calculation
will be stored back to different collections of the long-term database, but may also be stored into the
operational database (which holds information about the current status of the grid and a short-term
window of data), or republished to the internal ESB with the objective of making certain KPIs accessible to
other modules of the application.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 115

WiseEVP

BIG DATA PLATFORM

Long-term database

Data mining and analytics

KPI calculator

KPI calculator

KPI calculator

Operational database

Internal ESB

Figure 49 – WiseEVP Big Data mining

As part of the implementation and lab-testing task, the real-time monitor module of the WiseEVP
application has been configured to store all data produced within the lab environment in the MongoDB
cluster developed in this work package. This implied the creation of one database hosting the collections
specified below.

Table 11 – Collections in Wise EVP database

Collection Description

Wiseevp_evs History of status reported by electric vehicles
(about 1 value every 10 seconds, depending on
pilot site-specific implementation)

Wiseevp_metervalues History of energy readouts notified by charging
stations (1 value every 15 minutes during charging
sessions)

Wiseevp_energymix Actual energy mix history at the location of the
corresponding pilot site (1 register every hour)

Wiseevp_energymixforecast History of energy mix forecasts at the location of
the corresponding pilot site (46 registers every
hour)

Wiseevp_weather Actual weather history at the location of the
corresponding pilot site (1 register every hour)

Wiseevp_weatherforecast History of weather forecasts at the location of the
corresponding pilot site (12 registers every hour)

Details of the database used during the lab testing phase by the WiseEVP:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 116

Figure 50 – WiseEVP database

In order to take advantage of the capabilities of the clustered database, the collections need to be sharded,
so data is actually distributed among the different nodes of the cluster. The advantages of this
configuration are described in detail in D5.1 [1]. The most important point when applying this configuration
is defining the proper shard key for the collection, which is used to automatically create partitions among
data that are stored at different nodes. As explained in MongoDB official documentation, the shard key
determines the distribution of the collection's documents among the cluster's shards. The shard key is either
an indexed field or indexed compound fields that exists in every document in the collection [26].

In the case of WiseGRID Cockpit, tests have been carried out with the wiseevp_evs and
wiseevp_metervalues collections, the ones holding the history of status and setpoints of the assets in the
building. The selected shard key for both is similar {id:1, timestamp:1}. By including the ID of the devices, it
is assured that measures of different devices are candidates to be separated in different clusters. Since the
collection contains historical readout data, timestamps were also chosen to be included in the shard key in
order to promote the separation of the data accordingly to the periods in time they refer to. Results of this
configuration are shown below:

db.getCollection('wiseevp_evs').getShardDistribution()

Shard rs0 at rs0/sh0r0:27017,sh0r1:27017

 data : 32.14MiB docs : 154628 chunks : 1

 estimated data per chunk : 32.14MiB

 estimated docs per chunk : 154628

Shard rs1 at rs1/sh1r0:27017,sh1r1:27017

 data : 32.14MiB docs : 154629 chunks : 1

 estimated data per chunk : 32.14MiB

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 117

 estimated docs per chunk : 154629

Shard rs2 at rs2/sh2r0:27017,sh2r1:27017

 data : 41.11MiB docs : 198872 chunks : 2

 estimated data per chunk : 20.55MiB

 estimated docs per chunk : 99436

Totals

 data : 105.41MiB docs : 508129 chunks : 4

 Shard rs0 contains 30.49% data, 30.43% docs in cluster, avg obj size on

shard : 217B

 Shard rs1 contains 30.49% data, 30.43% docs in cluster, avg obj size on

shard : 217B

 Shard rs2 contains 39% data, 39.13% docs in cluster, avg obj size on

shard : 216B

It can be observed that the shard key works as expected, distributing data approximately equally among
the three nodes. In addition, the logs show how the shards are replicated (sh0r0/sh0r1,
sh1r0/sh1r1, sh2r0/sh2r1), thus increasing the availability of the data in the cluster in case of
failure.

9.1.8 Big data interactions from WG FastV2G application

9.1.8.1 Interface with Big Data platform

FastV2G is the Charging Station for Electric Vehicles developed within the WiseGRID project with
the capability of transferring energy stored in EVs battery to grid. This asset will be managed by the
WiseEVP application, and will not make use of the big data platform.

9.1.9 Big data interactions from WG Staas/VPP application

9.1.9.1 Short application description

WG StaaS/VPP (“Storage as a Service / Virtual Power Plant”) is WiseGrid’s solution to clustering
distributed storage systems and making them usable for the grid in general and for DSOs in particular. This
will be achieved by:

 enabling forecasting of the flexibility of the connected distributed batteries,

 enabling collective contribution to various markets (wholesale, ancillary services) with this
flexibility, and

 enabling collective scheduling of distributed storage systems in order to fulfil market requests in an
optimized way.

This is done by separating WG StaaS/VPP into several sub-components as sketched in Figure 51 –
Sketch of data flow between WG StaaS/VPP components and neighbouring WG tools.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 118

Figure 51 – Sketch of data flow between WG StaaS/VPP components and neighbouring WG tools

There are two main loops of data flow within WG StaaS/VPP:

Slow loop (executed every 15 minutes):

1. Flexibility Estimator determines remaining flexibility within the next 24 hours.

2. Sales Agent tries to sell this flexibility to the markets.

3. If some flexibility could be sold to the markets: Schedulers schedules fulfilling of required services
by the batteries and communicates this schedule back to the Flexibility Estimator.

4. back to step 1.

Fast loop (executed every couple of seconds):

1. If services need to be served to the grid right now: Scheduler determines if, e.g., required active
power is currently fulfilled. If not: Scheduler re-calculates power to be delivered by each individual
battery.

2. Batteries try to follow Schedulers’s requests.

3. back to step 1.

9.1.9.2 Interface with Big Data platform

WG StaaS/VPP uses two databases fulfilling different purposes:

 Operational DB: WG-internal DB that holds short-term data, contractual data and data intended to
be passed from one sub-component, e.g., the “Scheduler” to another one, e.g., the “Flexibility Es-
timator”.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 119

 Long-term DB: Big data platform as described in this document to store data required for longer
periods of time.

The following data are intended to be stored in the long-term DB:

 Monitoring data from the batteries as specified in ¡Error! No se encuentra el origen de la referen-
cia.

 Battery schedules as determined by the Scheduler sub-component: required metering point active
power, required battery system reactive power, required battery system frequency control set-
points, ...

Table 12 – List of WG StaaS/VPP monitoring data

Type Variable Explanation Unit Range

Double Meter_Active_Power at the grid connection point of the house-
hold as measured by the battery controller

W [-Pmax,
Pmax]

Double Meter_Reactive_Power at the grid connection point of the house-
hold as measured by the battery controller

VAr [-Qmax,
Qmax]

Double Inverter_Active_Power (AC) active power of the battery inverter W [-Pmax,
Pmax]

Double Inverter_Reactive_Power of the battery inverter VAr [-Qmax,
Qmax]

Double Inverter_PV_Power of the PV inverter included in a battery sys-
tem, if it is such a “hybrid” system

W [-Pmax,
Pmax]

Double External_PV of a stand-alone PV inverter, which is
somehow measured by or in communica-
tion with the battery controller

W [-Pmax,
Pmax]

Double Inverter_Battery_Power DC power of the battery inverter W [-Pmax,
Pmax]

Double Battery_SOC usable energy presently in the battery di-
vided by actually usable energy capacity

% [0, 100]

Double Battery_SOH actually usable energy capacity divided by
rated capacity

% [0, 100]

Double Battery_Voltage V [0, 500]

Double Meter_Grid_Voltage at the grid connection point of the house-
hold as measured by the battery controller

V [0, 500]

Double Meter_Grid_Frequency at the grid connection point of the house-
hold as measured by the battery controller

Hz [0, 500]

Array Temperatures:
Batt_Cell_Max_T,
Batt_Cell_Min_T,
Inverter_T

 maximum temperature of the battery
cells, minimum temperature of the battery
cells, inverter IC temperature

 ºC [-500,
500]

Double Charge_Available actual maximum available active charge
power (AC) of the battery

W [0, Pmax]

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 120

Double Discharge_Available actual maximum available active discharge
power (AC) of the battery

W [0, Pmax]

Int Status 0: disconnected, 1: connected, 2: charge, 3:
discharge, 4: standby, 5: error, 6: busy, 7:
islanding

--- ---

Array Alarms Error numbers --- ---

Double Inverter_PV_Voltage V [0, 1000]

Int Working mode as defined in sheet 'Operation' --- ---

Double Demand power consumed at the house W [-Pmax,
Pmax]

Based on these datasets, the “Billing management” sub-component ensures proper remuneration

of contribution battery systems by retrieving back historical data from the long-term DB, e.g. active powers
actually delivered by individual batteries and other individual contributions to the overall VPP-services.
Additionally, the forecast modules can generate production and demand forecasts based on these historical
data, which are required to estimate the battery system flexibilities within the Flexibility Estimator module.

9.1.10 Big data interactions from WG RESCO application

9.1.10.1 Short application description

The WG RESCO is a tool conceived for RESCOs - Renewable Energy Service Companies and ESCOs that
want to provide RES services to end-users (households or businesses) that do not own nor wish to maintain
the necessary equipment. In this perspective, three potential scenarios are envisaged:

 RESCO pays a fee to end-users using their premises (e.g. for installing PVs on their roof), installs and
maintains the RES assets and markets all produced energy;

 RESCO provides to customers the supply of energy coming from RES owned by the RESCO (i.e.
allowing self-consumption) and markets the production surplus;

 RESCO provides to customers the installation of RES equipment (e.g. PV panels) which are owned
and maintained by the RESCO but fully exploited by the end customers (renting business model).

According to that, the WG RESCO tool will support RESCOs in managing the relationship with their custom-
ers and the provision of energy to the consumers from renewable energy sources, usually PV, wind power
or micro hydro. Since the generation equipment will be owned, serviced and operated by the RESCO itself,
the WG RESCO will have a central feature in supporting the maintenance management of those assets.
 WiseGRID RESCO Tool was designed and developed based on the previously described perspective
and understanding for the business model of a RESCO. Fundamentally, this tool needs to provide all the
necessary functionalities that support and facilitate the activities of this business actor. The main function-
alities can be summarized as follow:

1. Performs all the necessary functionalities required for the business operations like:

- Manage contracts with customers

- Manage portfolio of installed assets

- Manage assets maintenance

- Manage energy flows

- Manage economic flows

- Manage energy metering and forecasting

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 121

- Manage the Market bid

- Provide data for future Investment Decision

-

2. Supports the Interoperability with external tools

3. Incorporates Functional User Interface

9.1.10.2 Interface with Big Data platform

The WG RESCO tool has been developed using the MEAN.JS full-stack JavaScript solution, this
choice has been made to build fast, robust, and maintainable production web applications using MongoDB
which is the one adopted for the Big Data platform, AngularJS and adopting Node.js as engine.

Currently the RESCO tool store its data in two different data base provided by the Big Data
Platform:

 “Local DB” to store Customer data, Contract data, Asset data, Configuration data and real
time meter observation coming from RES source and stored by the RT Monitor tool.

 “Long term DB” to store historical data coming from RES source via the RT Monitor module.
Similarly, to other applications, the Real-Time Monitor module is in charge of subscribing to
the corresponding flows of data and store it to the long-term database, hosted by the big
data platform. RESCO tool can also have direct access to the long-term DB to store data
needed for future analysis (like billing data, wholesale market offers) and use specific DB
interaction services to divide the computational load.

WG Resco tool access directly to Big Data platform via java script. Mongoose ,that is an Object Data Model-
ling (ODM) library for MongoDB and Node.js is adopted to helps the developer to manages relationships
between data, provides schema validation, and it is also used to translate between objects in code and the
representation of those objects in MongoDB.

Figure 52 – Object Mapping between Node and MongoDB managed via Mongoose

The next image shows a high-level architecture about the interface between the WG RESCO tool

and the Big Data Platform. As shown, the WG RESCO tool can read and write data directly by the Local DB
and Long-term DB. It can also send requests to the WG Services and Tools in order to receive data stored
into the Big Data Platform that are mainly provided by these services/tools. To do that, the RESCO tool send
a specific request queue via the WG IOP, the WG services and tools read the request, perform an query into

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 122

the Long-Term DB and send the response queue with the data retrieved via WG IOP to the WG RESCO tool
that read the response and consume it.

Figure 53 – WG RESCO Tool interface with Big Data Platform

10 CONCLUSIONS AND NEXT STEPS

10.1 CONCLUSIONS

This deliverable defined an infrastructure for implementing the Big Data services both online and
offline in a lab testing demonstrator. For providing the Big Data services needed in the WiseGRID project
are needed two horizontally scalable computer clusters.

 The first cluster is providing online Big Data services as long term data storage and retrieving in
separate databases for each application.
o A limited access database for each application containing data that are not under the

restrictions of GDPR. The access will be granted by a user/password pair contained in each
data base.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 123

o Each application will access the database through a dedicated application router installed
on a separate cluster node.

 The first cluster is running MongoDB NoSQL database management system on a computer cluster
of eleven nodes.

 The second cluster is hardware separated from the database cluster is providing the offline
services. This cluster is based by Apache Hadoop framework and will provide the remote
processing of applications based on Apache Spark operators.

The second cluster is connected to the MongoDB database cluster through the Hadoop MongoDB
connector. Each application will have a separate account for each WiseGRID application. The
cluster is minimally composed of five nodes.

Table 13 – Deliverable objectives

10.2 NEXT STEPS TO BE IMPLEMENTED

The next step is to test the small-scale demonstrator of both computer cluster, MongoDB computer
cluster and Apache Hadoop computer cluster for the interaction with the WiseGRID applications. The test-
ing of the demonstrator will show the extent of the needs of Pilot sites in order to scale the Big Data plat-
form for each pilot site to the applications requirements. This small scale demonstrator will be duplicated
for each Demo Site providing the services for demo applications in each site. Based on the data collected
from each demo site the computer clusters will be defined from the point of view of required resources.

Objective Achieved within WP

Defining the hardware infrastructure of a Big Data computer cluster demon-
strator providing cloud services to WiseGRID applications for online services
like long term data storage and retrieving

WP5.1 WP5.2

Defining the hardware infrastructure of a Big Data computer cluster demon-
strator providing cloud services to WiseGRID applications for offline services
line data mining and analytics.

WP5.1 WP 5.2

Providing a clear and extensive manual for installation and deploying of the
MongoDB cluster to be used in Big Data platform for the pilot sites

WP5.1 WP5.2

Providing a clear and extensive manual for installation and deploying of the
Hadoop Spark cluster to be used in Big Data platform for the pilot sites

WP5.1 WP5.2

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 124

11 REFERENCES AND ACRONYMS

11.1 REFERENCES

[1] Lacatus, Paul (CRE), “D5.1 WiseGRID cloud-based big data infrastructure 1.0,” 2018.

[2] B. Marr, “Big Data the 5 Vs everyone must know,” [Online]. Available:
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-
know/.

[3] B. Hedlund, “Understanding Hadoop Clusters and the Network,” [Online]. Available:
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/.

[4] Wikipedia , “Wikipedia Single_board computers,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Single-board_computer.

[5] Wikipedia , “Raspberry Pi,” [Online]. Available: https://en.wikipedia.org/wiki/Raspberry_Pi.

[6] Wikipedia , “ARM architecture,” [Online]. Available: https://en.wikipedia.org/wiki/ARM_architecture.

[7] Raspberry Pi Foundation , “Putting the power of digital making into the hands of people all over the
world. Strategy 2016-2018,” [Online]. Available:
https://static.raspberrypi.org/files/about/RaspberryPiFoundationStrategy2016-18.pdf.

[8] Raspberry pi Foundations, “Any plans for 64-bit Raspbian,” [Online]. Available:
https://www.raspberrypi.org/blog/eben-q-a-1/.

[9] Hardkernel, “Odroid XU4,” [Online]. Available: https://wiki.odroid.com/odroid-xu4/odroid-xu4.

[10] Hardkernel, “Odroid C2,” [Online]. Available: https://wiki.odroid.com/odroid-c2/odroid-c2.

[11] MongoDB , “MongoDB Manual,” [Online]. Available: https://docs.mongodb.com/manual/.

[12] i. o. Thingiverse, “DIN Mounts : Pi, Arduino and disks,” [Online]. Available:
https://www.thingiverse.com/thing:2610621.

[13] ". o. Thingiverse, “Support rail DIN Wago 221,” [Online]. Available:
https://www.thingiverse.com/thing:2764407.

[14] Hardkernel , “Odroid C2 Manual,” [Online]. Available: https://magazine.odroid.com/wp-
content/uploads/odroid-c2-user-manual.pdf.

[15] DigitalOcean , “How To Install Webmin on Ubuntu 16.04,” [Online]. Available:
https://www.digitalocean.com/community/tutorials/how-to-install-webmin-on-ubuntu-16-04.

[16] A. Felong, “UPDATE: MongoDB 3.6 on ODROID C2 with Ubuntu 16.04.3 – ARM64,” [Online]. Available:
https://andyfelong.com/2018/02/update-mongodb-3-6-on-odroid-c2-with-ubuntu-16-04-3-arm64/.

[17] CodingMiles.com, “Step by step MongoDB sharded cluster deployment,” [Online]. Available:
http://codingmiles.com/mongodb-sharded-cluster-deployment/.

[18] www.guru99.com, “MongoDB Sharded Cluster - Step by Step Implementation,” [Online]. Available:
https://www.guru99.com/mongodb-sharding-implementation.html.

[19] www.hatcher.com, “How to deploy a MongoDB cluster (version 3.4),” [Online]. Available:

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 125

https://www.hachther.com/en/blog/deploy-mongodb-cluster-version-3-4/.

[20] www.alibabacloul.com, “High-availability MongoDB Cluster Configuration Solutions,” [Online].
Available: https://www.alibabacloud.com/blog/high-availability-mongodb-cluster-configuration-
solutions_490866.

[21] Hardkernel, “Odroid XU4 manual,” [Online]. Available: https://magazine.odroid.com/wp-
content/uploads/odroid-xu4-user-manual.pdf.

[22] DIY Big Data, “Installing Hadoop onto an ODROID XU4 Cluster,” [Online]. Available:
http://diybigdata.net/2016/06/installing-hadoop-onto-an-odroid-xu4-cluster/.

[23] MongoDB manual , “MongoDB Connector for Hadoop,” [Online]. Available:
https://docs.mongodb.com/ecosystem/tools/hadoop/.

[24] Mongo Hadoop Connector Wiki, “Mongo Hadoop Connector Wiki,” [Online]. Available:
https://github.com/mongodb/mongo-hadoop/wiki.

[25] MongoDB manual , “Hadoop and MongoDB Use Cases,” [Online]. Available:
https://docs.mongodb.com/ecosystem/use-cases/hadoop/.

[26] “MongoDB Shard Keys,” [Online]. Available: https://docs.mongodb.com/manual/core/sharding-shard-
key/.

[27] MongoDB, “MongoDB forGiant Ideeas,” [Online]. Available: https://www.mongodb.com/.

[28] Wikipedia, “Wikipedia BigData Definitions,” [Online]. Available:
https://en.wikipedia.org/wiki/Big_data.

[29] Webmin site , “Webmin,” [Online]. Available: http://www.webmin.com/index.html.

[30] MongoDB Compass, “MongoDB Compass,” [Online]. Available:
https://www.mongodb.com/products/compass.

[31] Apache Software Foundation , “Apache Software foundation,” Apache, [Online]. Available:
https://www.apache.org/.

[32] Apache , “Apache Hadoop,” [Online]. Available: http://hadoop.apache.org/.

[33] MongoDB, “Wiki of MongoDB Hadoop Connector,” [Online]. Available:
https://github.com/mongodb/mongo-hadoop/wiki.

[34] Apache Spark , “Apache Spark™,” [Online]. Available: https://spark.apache.org/.

[35] Apache Hadoop, “Apache Haddop Docs, Cluster setup,” [Online]. Available:
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html.

[36] Tutorials point, “MongoDB Quick Guide,” [Online]. Available:
https://www.tutorialspoint.com/mongodb/mongodb_quick_guide.htm.

[37] [Online]. Available: https://www.mongodb.com/products/compass.

D5.2 WiseGRID Big Data Cloud-based infrastructure Testing and Refinement 126

11.2 ACRONYMS

Table 14 – List of Acronyms

Acronyms List

BSON Binary JavaScript Object Notation

CHP Combined Heat and Power

DB Data base

DSO Distribution service operator

ESB Enterprise Service Bus

ESCO Energy service company

EV Electrical vehicle

EVSE Electrical vehicle service equipment

HV High Voltage

HVAC Heat, Ventilation and Air Conditioning

IOP Interoperability platform

JSON JavaScript Object Notation

KPI Key performance indicators

RDBMS Relational Data Base Management system

RESCO Renewable energy service company

RT Real Time

SCADA Supervisory Control And Data Acquisition

SoC State of Charge

StaaS Storage as a service

TM Technological Manager

VPP Virtual power plant

SBC Single board computers

OS Operating system

SMPS Switched mode power supply

CLI Command line interface

