Materials and Processes based on In-Situ Resource Utilization to Support the Construction of Sustainable Settlements on the Moon/Mars

Advenit Makaya - G-STIC

24/10/2017
Introduction: Exploration beyond low Earth-orbit

- Renewed interest for human and robotic exploration beyond low Earth-orbit

NASA’s Orion crew vehicle with ESA’s European Service Module

Jan Woerner
ESA Director General

Exomars: ESA-Roscosmos
Advenit Makaya - G-STIC | 24/10/2017 | Slide 2
Introduction: Exploration beyond low Earth-orbit

- Multiple nations, public & private, international cooperations

SpaceX Falcon Heavy and Dragon (Artist View)

Source: Wikimedia Commons

NASA’s Space Launch System (Artist View)

Source: Wikimedia Commons

China’s Chang’e 3

India’s Chandrayaan-1

Source: Wikimedia Commons
Introduction: Exploration beyond low Earth-orbit

• The Moon and Mars are the next destinations for post-ISS human exploration

• Resources exploitation (volatiles, water, metals) for sustainable exploration

• Planetary surface exploration (history of Solar System)

• Outpost for solar system exploration (e.g. radioastronomy)

• Training ground for Mars exploration
Introduction: Exploration beyond low Earth-orbit

- Long term or permanent settlements are envisaged on the Moon and Mars.
Introduction: ESA Clean Space

Information: Luisa.Innocenti@esa.int
Lunar Environment

- **Mean surface temperature**: South pole: -153 °C; At latitude 20°N: ~-66°C

- **Temperature variations**:
 - South polar crater: -103 °C to -43 °C on the rim; -233 °C to -203 °C inside the crater (in permanent darkness)
 - Equatorial region: -173 °C to +116 °C --> Could be -93 °C to +176 °C because of lunar albedo

- **Solar irradiation**: 35% higher than on Earth at ≈1350 to 1450 W/m²

- **Day length**: 28+ Earth days at the equator, near continuous dark/light at the poles
Lunar Environment

- **Atmosphere**: none (vacuum)
- **Gravity**: 1/6 g
- **Radiation**
- **Micrometeorides**
- **Moonquakes**
Martian Environment

- **Mean surface temperature**: -55 °C
- **Temperature variations**: -143 °C to 35 °C
- **Solar irradiation**: 590 W/m²
- **Day length**: 24 hours 37 minutes
- **Atmosphere**: Mostly CO₂, 6.35 mbar surface pressure, dust storms
- **Gravity**: 3/8 g
- **Radiation**
Sustainable Lunar/Martian Habitat

- **Materials** are key aspects in the design of missions for exploration and the establishment of *sustainable settlements* on the Moon or Mars.

- **Maximise** the use of Material resources available at destination:
 - Substantial *savings* in payload *mass, cost* and mission *complexity*
 - *Reduce dependence* on cargo

- **In-situ Resource Utilisation** (ISRU) for building of habitat and supporting structures (e.g. landing pads, shielding walls, antenna towers...)
 - Enables establishment and expansion of settlement
 - Various technologies investigated at ESA
Sustainable Lunar/Martian Habitat

• **Optimum usage, re-use and recycling** of Materials brought for the mission – in particular **functional polymers** – for the production and the recycling of hardware for maintenance of infrastructure and equipment

  Careful Material selection during mission design phases: re-usable, recyclable

  Versatile materials and processes to increase maintenance capability

  Achieve sustainable settlement: reduce Material waste

  **Responsible consumption and production**

• **Additive Manufacturing** (AM) techniques are of high interest as they allow efficient material use, do not require cutting, joining tools and can be automated

  **Enabling** technologies for Space exploration missions
ISRU for Construction and Hardware

- **Overview of relevant technology development activities** led by ESA Materials and Processes the field of:

 Innovative ISRU-based materials and processes for *Infrastructure* construction in support of human settlements on the Moon and Mars

- Abundant resource to produce construction material for infrastructure and hardware manufacturing: **regolith** (mixture of dust, soil and broken rock constituting the superficial layer of the Moon/Mars)

- Various technologies are investigated to turn regolith into building material
3D Printing of Lunar Base Building Block Using a Mg-based Binder (D-Shape process)

- ESA-funded study (General Studies Programme) 2012
- Consortium: Monolite (UK), Alta (IT), Scuola Superiore Sant’Anna (IT), Foster+Partners (UK)

- 3D printing technology: D-Shape process: mix the lunar regolith with a MgO/ MgCl₂ binder
- Development of a regolith simulant (DNA)
- Printing experiments under vacuum ☺ Feasibility
3D Printing of Lunar Base Building Block Using a Mg-based Binder (D-Shape process)

- Design of Lunar base concept
- 1.5 ton Lunar base building block demonstrator

Challenges:

- Binder ∇ minimise, produce locally
- Regolith behaviour (abrasive, charged, radiation)
- Mobility (rover)
3D Printing of Lunar Base Building Block by Solar Sintering

- ESA-funded study (General Support Technology Programme): 2015 –
- Contractor: DLR (DE)
- 3D printing technology: solar sintering using concentrated solar light
 - No binder brought from Earth, use of local energy source
- Design of 3D printing equipment and process
3D Printing of Lunar Base Building Block by Solar Sintering

3D printing setup

(Xe high-flux solar simulator)
3D Printing of Lunar Base Building Block by Solar Sintering

- Scanning strategy, characterisation of regolith and sintered material

Challenges:

- Thermal stresses; layered structure
- Regolith behaviour (abrasive, charged, radiation)
- Effect of vacuum?
Limited Resources Manufacturing

- ESA-funded study (Basic Technology Research Programme): 2015 –
- Contractor: Fotec (AT)
- Mapping and trade-off of ISRU technologies for hardware manufacturing
- Programming of tool for technology trade-off using weighted criteria

Full map of process diagrams
Limited Resources Manufacturing

Extrusion-deposition process diagram

Full map of process diagrams

Example of trade-off
Limited Resources Manufacturing

- Selection and demonstration of hardware manufacturing process:
 - Extrusion-deposition of regolith-based paste
 - Binder: concentrated phosphoric acid
 - Martian Regolith Simulant used, but process adaptable to Lunar Regolith

- Challenges:
 - Binder ratio high \(\bigcirc \) Minimise
 - Stickiness of paste
 - Sagging of deposited material
 - Behaviour in vacuum?

Concentrated phosphoric acid and JSC Mars-1a Martian regolith simulant.
Current mixture ratio: 6 parts concentrated phosphoric acid; 2 parts water; 10 parts regolith
Conclusions

- **Materials** aspects need to be considered **early stages** of conceiving Moon/Mars missions to support **sustainable** exploration and Human settlements
 - In-Situ Resource Utilization to produce required structural materials (know the mission location, local resources, required equipment, energy needs)
 - Select materials transported for the mission for re-use and recycling

 responsible production

- **Additive Manufacturing** technologies are **innovative** enabling elements for the establishment of **sustainable** Human settlements

- **Combination** of several **technologies** for various purposes (infrastructure, hardware, large scale, small objects) and **partnership** will allow to make full use of the available Materials to achieve the missions objectives
Acknowledgements

Laurent Pambaguian
Julian Austin
Xavier de Kestelier
Enrico Dini
Valentina Colla
Giovanni Cesaretti
Matthias Sperl
Alexandre Meurisse
Christoph Buchner
Roland Pawelke
Thomas Schlauf

ESA
ESA
Foster+Partners
Monolite
Scuola Superiore Sant’Anna
Alta
DLR
Fotec
Fotec
Fotec
Thank you for your attention

Questions?

Advenit.Makaya@esa.int