Three Revolutions in Urban Transportation:

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

GSTIC 2017
Urban Electric Mobility Track
Brussels, 23 October 2017

Lew Fulton, Co-Director
Sustainable Transportation Energy Pathways Program (STEPS)
UC Davis
Passenger Transport Revolutions

1. Streetcars (~1890)
2. Automobiles (~1910)
3. Airplanes (~1930)
4. Limited-access highways (1930s….1956)

2010+
1. Vehicle electrification
 – low carbon vehicles and fuels
2. Real-time, shared mobility
 – less vehicle use
3. Vehicle automation (2025?)
 – Uncertain impacts
Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/three-revolutions-landing-page/

Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Lew Fulton, UC Davis
Jacob Mason, ITDP
Dominique Meroux, UC Davis

May 2017

Research supported by:
ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation
Have EVs arrived?
During 2017, the number of PEVs worldwide will likely go over 3 million, with over 1 million in sales this year.
Norway & Netherlands achieved high PEV market shares in 2016, most other national markets around 1-2%.

- Norway 30% in 2016
- Hong Kong 5%
- California 3%
- Switzerland 2%
- Sweden 2.6%
- San Jose 10%
- Shanghai 15%
A plausible PEV rollout scenario based on technology change, incentives & history of previous technology rollouts

<table>
<thead>
<tr>
<th>Generation</th>
<th>Description</th>
<th>Years</th>
<th>Market Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Early policy, converted vehicles, "innovators" & early infrastructure</td>
<td>2010-2015</td>
<td>1-2%</td>
</tr>
<tr>
<td>2nd</td>
<td>Improved batteries, more driving range, "followers" Adequate infrastructure</td>
<td>2015</td>
<td>3-5%</td>
</tr>
<tr>
<td>3rd</td>
<td>Batteries, vehicles, "core market" PEVs competitive</td>
<td>2020</td>
<td>6-15%</td>
</tr>
<tr>
<td>4th</td>
<td>PEVs begin to dominate</td>
<td>2025</td>
<td>15-25%</td>
</tr>
</tbody>
</table>

For 2030:
- California 2025 ZEV goal = 15% / 1.5 million BEVs, FCV & PHEVs

Lithium pack prices per kWh:
- 700
- 300
- 200
- 150
COP Announcement – Paris Declaration on E-mobility

- Released at COP 21, December 5 2015
- Signed by UN Agencies, IEA and many governments
- Commits to “more than 100 million electric-driven cars” on the worlds roads by 2030 as part of achieving a 2-degree target.
- IEA roughly estimates that electric vehicle sales will need to be 25% (~30 million) world wide in 2030 to achieve this target.

- Is this possible? Plausible? What would be needed to achieve such a target?
What does achieving the Paris Declaration targets look like?

- One possible way: 100 models selling 300k/yr each in 2030
Number of electric vehicle models available
The key policies

- Supply side: Encourage production
- Consumer Awareness!!! (and experience)
- Make the up front cost be competitive
- Recharging infrastructure
- Urban advantages (parking, access)
Current E-bike market in the EU

- Average annual growth rate 2013 – 2015: 16%
- 2016: 25% (1.66m units)
- Total stock 12/2016: 8.2 million units
- Expected total stock 12/2017: 10 million units
Car of the future?

Accelerating the Next Revolution
In Roadway Safety

September 2016
Some questions and conflicts

• Automation: lower per-trip costs, lower “time cost” for being in vehicles
 – Just how much cheaper will it be?
 – Private automated vehicles = longer trips?
 – Empty running (zero passengers) of vehicles
 – Resulting relative costs of private vehicles, shared mobility, transit?

• Electrification goes with automation – does it really?
 – Can get the job done with upgraded electrical system (such as hybrids)
 – But electric running will be much cheaper – and durable?

• Ride hailing: cost savings v. convenience and risk
 – Complementary or at conflict with public transit use?
 – Will lower costs reduce the incentive to ride share?
Part 2: our scenarios...we want to explore these interactions and different possible futures
Rough guide to the three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Automation</th>
<th>Electrification</th>
<th>Shared Vehicles</th>
<th>Urban Planning/Pricing/TDM Policies</th>
<th>Aligned with 1.5 Degree Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business as usual, Limited Intervention</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>1R Automation only</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>2R With high Electrification</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Maybe</td>
</tr>
<tr>
<td>3R With high shared mobility, transit, walking/cycling</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>YES</td>
</tr>
</tbody>
</table>
Passenger kilometers of travel by scenario/mode
OECD Europe

- Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2050. Results in much higher travel in 2R.
- Europe remains fairly car dominated to 2050 - modal mix changes in 3R, but mostly due to TNCs. Significant minibus travel. Non-car travel reaches 35% in 3R.
OECD-Europe LDV travel (VKm) by scenario

- 2R vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles
- 3R vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles
OECD-Europe LDV stock evolution by scenario

- 2R stocks nearly completely autonomous by 2050
- 3R stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors
Energy use by scenario, mode

- Far lower energy use in 2R due to EVs, and in 3R due to low LDV mode shares
Urban passenger transport CO2 by scenario, vehicle type, world

4DS electricity shown; in 2DS, CO2 from electricity drops to near zero in 2050

Global CO2 reduction in a 2DS electricity world, 2R/3R v. BAU, in 2050 and cumulative

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2050</th>
<th>2015-2050 cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2R v BAU</td>
<td>82%</td>
<td>37%</td>
</tr>
<tr>
<td>3R v BAU</td>
<td>93%</td>
<td>53%</td>
</tr>
</tbody>
</table>

CO₂ Emissions - World

Gigatonnes

- 0
- 1
- 2
- 3
- 4
- 5

<table>
<thead>
<tr>
<th>Year</th>
<th>BAU 2015</th>
<th>BAU 2030</th>
<th>2R 2030</th>
<th>3R 2030</th>
<th>BAU 2050</th>
<th>2R 2050</th>
<th>3R 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2030</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2050</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Electric vehicles

ICE vehicles
Costs start to deviate across scenario after 2030, 3R 40% cheaper in 2050

- The combination of far fewer vehicles, lower travel/fuel levels, lower infrastructure requirements (roads/parking) makes 3R far cheaper.
- 2R more expensive than BAU due to higher cost of AV/EVs and greater travel
Supportive Policies – critical to success of the scenarios

- **3R Scenario (Automation + Electrification + Sharing):**
 - Compact Urban Development policies
 - Efficient parking policies
 - Heavy investment in transit/walking/cycling
 - VKT fees (incl. congestion & emission factors):